Estimulación espinal para la espasticidad: enfoques históricos, estado actual y tendencias futuras.
Artículo publicado en: Neuromodulation 2017;20:307-21 Traducción: Dr. Juan Carlos Andreani.
DOI:
https://doi.org/10.47924/neurotarget201887Palabras clave:
daño medular traumático, espasticidad, estimulación epidural, estimulación medular espinal, motoneuronas, pruebas clínicas, reflejo HResumen
Introducción: La espasticidad es una condición relacionada a daño cerebral o de la médula espinal que afecta a millones de personas en el mundo, causada a menudo por eventos como accidente cerebro – vascular, daño traumático cerebral o medular, aunque es también común un comienzo insidioso del padecimiento. Sin desmedro de la causa, la espasticidad resultante llevará a años de discapacidad y calidad de vida reducida. Se dispone de varios tratamientos para esta condición mórbida, aunque cada uno de ellos está gravado con inconvenientes, incluyendo respuesta clínica incompleta, alto costo, duración limitada de respuesta, efectos colaterales limitantes relacionados a la dosis, y necesidad de mantenimiento periódico. La estimulación medular (EM), alguna vez promisorio tratamiento para la espasticidad, ha sido relegada a un estado experimental permanente.
Métodos.En esta revisión, nuestro objetivo es documentar y criticar la historia y evaluar el desarrollo de SCS como tratamiento de la espasticidad de las extremidades inferiores. Al incorporar los descubrimientos recientes con los conocimientos adquiridos por los primeros pioneros en este campo, tenemos la intención de sentar las bases necesarias para proponer hipótesis comprobables para estudios futuros.
Resultados. La EM ha sido probada en más de 25 condiciones diferentes desde que se reportó un efecto potencialmente beneficioso en 1973. Sin embargo, la falta de una comprensión completa de la fisiopatología de la espasticidad, la metodología de estudio arcaica y las limitaciones tecnológicas iniciales del hardware implantable limitan la validez de muchos estudios. SCS ofrece una medida de control de la espasticidad que no se puede reproducir con otras intervenciones.
Conclusiones. Con una mejor miniaturización de la fuente de energía, algoritmos de control personalizados, un diseño de implantes más desarrollado y una mayor comprensión de la fisiopatología de la espasticidad estamos preparados para reintroducir y volver a probar la EM en esta población.
Métricas
Citas
Duchenne GB. Treatise on localized electrization, and its applications to pathology and therapeutics. New York: Classics of Neurology & Neurosurgery Library, 1992. Google Scholar
Siegfried J, Lazorthes Y, Broggi G. Electrical spinal cord stimulation for spastic movement disorders. Appl Neurophys 1981;44:77-92. PubMed Web of Science®Google Scholar
Gybels J, van Roost D. Spinal cord stimulation for spasticity. Adv Tech Stand Neurosurg 1987;15:63-96. Crossref CAS PubMedGoogle Scholar
Sherwood AM. Peripheral and central electrical stimulation. Curr Opin Neurol Neurosurg 1988;1:601-606. Web of Science®Google Scholar
Thiriez C, Gurruchaga JM, Goujon C, Fénelon G, Palfi S. Spinal stimulation for movement disorders. Neurotherapeutics 2014;11:543-52. Crossref PubMed Web of Science®Google Scholar
Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns. Anesth Analg 1967;46:489-91. Crossref CAS PubMed Web of Science®Google Scholar
Kumar K, Bishop S. Financial impact of spinal cord stimulation on the healthcare budget: a comparative analysis of costs in Canada and the United States. J Neurosurg Spine 2009;10:56473. Crossref PubMed Web of Science®Google Scholar
Grand View Research. Neurostimulation devices market analysis by product, 2015. http://www.grandviewresearch.com/industryanalysis/neurostimulation-devices-industry Google Scholar
North RB. Neural interface devices: spinal cord stimulation technology. Proc IEEE 2008;96:1108-19. Crossref Web of Science®Google Scholar
Levy RM. Progress in the technology of neuromodulation: the emperor’s new clothes?. Neuromodulation 2013;16:285-91. Wiley Online Library PubMed Web of Science®Google Scholar
Miller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 2016;19:373-84. Wiley Online Library PubMed Web of Science®Google Scholar
Kapural L, Yu C, Doust MW et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain. Anesthesiology 2015;123:851-60. Crossref PubMed Web of Science®Google Scholar
De Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 2010;66:986-90. Crossref PubMed Web of Science®Google Scholar
De Ridder D, Vanneste S. Visions on the future of medical devices in spinal cord stimulation: what medical device is needed?. Expert Rev Med Devices 2016;13:233-42. Crossref CAS PubMed Web of Science®Google Scholar
Slavin KV. Spinal stimulation for pain: future applications. Neurotherapeutics 2014;11:535-42. Crossref PubMed Web of Science®Google Scholar
Minassian K, McKay WB, Binder H, Hofstoetter US. Targeting lumbar spinal neural circuitry by epidural stimulation to restore motor function after spinal cord injury. Neurotherapeutics 2016;13:284-94. Crossref PubMed Web of Science®Google Scholar
Gibson-Corley KN, Flouty O, Oya H, Gillies GT, Howard MA. Postsurgical pathologies associated with intradural electrical stimulation in the central nervous system: design implications for a new clinical device. Biomed Res Int 2014;2014:989175. Crossref PubMed Web of Science®Google Scholar
Tekriwal A, Baltuch G. Deep brain stimulation: expanding applications. Neurol Med Chir 2015;55:861-77. Crossref Web of Science®Google Scholar
Hickey P, Stacy M. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front Neurosci 2016;10:173. Crossref PubMed Web of Science®Google Scholar
National Spinal Cord Injury Statistical Center. Spinal cord injury (SCI) facts and figures at a glance. J Spinal Cord Med 2016;39:493-4. Crossref PubMedGoogle Scholar
Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord 2005;43:577-86. Crossref CAS PubMed Web of Science®Google Scholar
Howard VJ. Stroke. In: Data needs for cardiovascular events, management, and outcomes. Bethesda, MD: National Heart, Lung, and Blood Institute, 2005. http://www.nhlbi.nih.gov/ research/reports/2005-cvd-events Google Scholar
American Heart Association. Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation 2016;133:447-54. Crossref PubMed Web of Science®Google Scholar
Martin A, Abogunrin S, Kurth H, Dinet J. Epidemiological, humanistic, and economic burden of illness of lower limb spasticity in adults: a systematic review. Neuropsychiatr Dis Treat 2014;10:111-22. PubMed Web of Science®Google Scholar
McGuire J. Epidemiology of Spasticity in the Adult and Child. In: Brashear A, Elovic E. Spasticity: Diagnosis and Management. Demos Medical Publishing LLC, New York, 2011; 51-70. Google Scholar
Arroyo R, Massana M, Vila C. Correlation between spasticity and quality of life in patients with multiple sclerosis: the CANDLE study. Int J Neurosci 2013;123:850-8. Crossref PubMed Web of Science®Google Scholar
Sheean G, McGuire JR. Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM R 2009;1:827-33. Wiley Online Library PubMed Web of Science®Google Scholar
El Basiouny SM, Moroz D, Bakr MM, Mushahwar VK. Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair 2010;24:23-33. Crossref PubMed Web of Science®Google Scholar
Hultborn H, Brownstone RB, Toth TI, Gossard JP. Key mechanisms for setting the input-output gain across the motoneuron pool. Prog Brain Res 2004;143:77-95. PubMed Web of Science®Google Scholar
Björklund AS. Descending monoaminergic projections to the spinal cord. In: Sjölund B, Björklund AS, eds. Brain stem control of spinal mechanisms. Amsterdam: Elsevier, 1982:55-88. Google Scholar
Binder MD, Heckman CJ, Powers RK. Relative strengths and distributions of different sources of synaptic input to the motoneurone pool: implications for motor unit recruitment. Adv Exp Med Biol 2002;508:207-12. Crossref PubMed Web of Science®Google Scholar
Jankowska E, Hammar I, Chojnicka B, Hedén CH. Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. Eur J Neurosci 2000;12:701-14. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Maxwell DJ, Riddell JS, Jankowska E. Serotoninergic and noradrenergic axonal contacts associated with premotor interneurons in spinal pathways from group II muscle afferents. Eur J Neurosci 2000;12:1271-80. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Hammar I, Bannatyne BA, Maxwell DJ, Edgley SA, Jankowska E. The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord. Eur J Neurosci 2004;19:1305-16. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Hammar I, Stecina K, Jankowska E. Differential modulation by monoamine membrane receptor agonists of reticulospinal input to lamina VIII feline spinal commissural interneurons. Eur J Neurosci 2007;26:1205-12. Wiley Online Library PubMed Web of Science®Google Scholar
Abbinanti MD, Harris-Warrick RM. Serotonin modulates multiple calcium current subtypes in commissural interneurons of the neonatal mouse. J Neurophysiol 2012;107:2212-19. Crossref CAS PubMed Web of Science®Google Scholar
Hyngstrom A, Johnson M, Schuster J, Heckman CJ. Movement related receptive fields of spinal motoneurones with active dendrites. J Physiol 2008;586:1581-93. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Bennett DJ, Li Y, Harvey PJ, Gorassini M. Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J Neurophysiol 2001;86:1972-82. Crossref CAS PubMed Web of Science®Google Scholar
Boulenguez P, Liabeuf S, Bos R et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010;16:302-7. Crossref CAS PubMed Web of Science®Google Scholar
Johnson MD, Kajtaz E, Cain CM, Heckman CJ. Motoneuron intrinsic properties, but not their receptive fields, recover in chronic spinal injury. J Neurosci 2013;33:18806-13. Crossref CAS PubMed Web of Science®Google Scholar
Saulino M, Ivanhoe CB, McGuire JR, Ridley B, Shilt JS, Boster AL. Best practices for intrathecal baclofen therapy: patient selection. Neuromodulation 2016;19:607-15. Wiley Online Library PubMed Web of Science®Google Scholar
Boster AL, Bennett SE, Bilsky GS et al. Best practices for intrathecal baclofen therapy: screening test. Neuromodulation 2016;19:616-22. Wiley Online Library PubMed Web of Science®Google Scholar
Boster AL, Adair RL, Gooch JL et al. Best practices for intrathecal baclofen therapy: dosing and long-term management. Neuromodulation 2016;19:623-30. Wiley Online Library PubMed Web of Science®Google Scholar
Saulino M, Anderson DJ, Doble J et al. Best practices for intrathecal baclofen therapy: troubleshooting. Neuromodulation 2016;19: 632-41. Wiley Online Library PubMed Web of Science®Google Scholar
Clearfield JS, Nelson MES, McGuire J, Rein LE, Tarima S. Intrathecal baclofen dosing regimens: a retrospective chart review. Neuromodulation 2016;19:642-9. Wiley Online Library PubMed Web of Science®Google Scholar
Cook AW, Weinstein SP. Chronic dorsal column stimulation in multiple-sclerosis – preliminary report. N Y State J Med 1973;73:2868-72. PubMed Web of Science®Google Scholar
Cook AW, Taylor JK, Nidzgorski F. Functional stimulation of the spinal cord in multiple sclerosis. J Med Eng Technol 1979;3:1823. Crossref CAS PubMed Web of Science®Google Scholar
Cook AW, Taylor JK, Nidzgorski F. Results of spinal cord stimulation in multiple sclerosis. Appl Neurophysiol 1981;44:55-61. PubMed Web of Science®Google Scholar
Dooley DM, Sharkey J, Keller W, Kasprak M. Treatment of demyelinating and degenerative diseases by electro stimulation of the spinal cord. Med Prog Technol 1978;6:1-14. PubMed Web of Science®Google Scholar
Dooley DM, Sharkey J. Electrical stimulation of the spinal cord in patients with demyelinating and degenerative diseases of the central nervous system. Appl Neurophysiol 1981;44:218-24. PubMed Web of Science®Google Scholar
Thoden U, Krainick JU, Strassburg HM, Zimmermann H. Influence of dorsal column stimulation (DCS) on spastic movement disorders. Acta Neurochir (Wien) 1977;39:233-40. Crossref CAS PubMed Web of Science®Google Scholar
Siegfried J, Krainick JU, Haas H, Meyer AM, Thoden U. Electrical spinal cord stimulation for spastic movement disorders. Appl Neurophysiol 1978;41:134-41. PubMed Web of Science®Google Scholar
Scerrati M, Onofrj M, Pola P. Effects of spinal-cord stimulation on spasticity – H-reflex study. Appl Neurophysiol 1982;45:62-7. PubMed Web of Science®Google Scholar
Richardson RR, McLone DG. Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol 1978;9:153-5. PubMed Web of Science®Google Scholar
Richardson RR, Cerullo LJ, Meyer PR. Autonomic hyperreflexia modulated by percutaneous epidural neurostimulation – preliminary-report. Neurosurgery 1979;4:517-20. Crossref CAS PubMed Web of Science®Google Scholar
Richardson RR, Cerullo LJ, McLone DG, Gutierrez FA, Lewis V. Percutaneous epidural neurostimulation in modulation of paraplegic spasticity. Acta Neurochir (Wien) 1979;49:235-43. Crossref CAS PubMed Web of Science®Google Scholar
Richardson RR, Nunez C, Siqueira EB. Histological reaction to percutaneous epidural neurostimulation: initial and long-term results. Med Progr Technol 1979;6:179-84. PubMed Web of Science®Google Scholar
Waltz JM, Pani RC, Spinal cord stimulation in disorders of the motor system. In: Popovic DB, ed. Advances in external control of human extremities: proceedings of the sixth international symposium on external control of human extremities. Belgrade, Yugoslavia: Yugoslav Committee for Electronics and Automation, 1978:545-56. Google Scholar
Waltz JM, Reynolds LO, Riklan M. Multi-lead spinal cord stimulation for control of motor disorders. Appl Neurophysiol 1981;44:244-57. PubMed Web of Science®Google Scholar
Waltz JM. Computerized percutaneous multi-level spinal cord stimulation in motor disorders. Appl Neurophysiol 1982;45:7392. PubMed Web of Science®Google Scholar
Waltz JM, Andreesen WH. Multiple-lead spinal cord stimulation: technique. Appl Neurophysiol 1981;44:30-6. PubMed Web of Science®Google Scholar
Waltz JM, Andreesen WH, Hunt DP. Spinal cord stimulation and motor disorders. Pacing Clin Electrophysiol 1987;10(1 Pt 2):180-204. Wiley Online Library Web of Science®Google Scholar
Waltz JM. Spinal cord stimulation: a quarter century of development and investigation. Stereotact Funct Neurosurg 1997;69:28899. Crossref CAS PubMed Web of Science®Google Scholar
Reynolds AF, Oakley JC. High frequency cervical epidural stimulation for spasticity. Appl Neurophysiol 1982;45:93-7. PubMed Web of Science®Google Scholar
Davis R, Gray E, Kudzma J. Beneficial augmentation following dorsal column stimulation in some neurological diseases. Appl Neurophysiol 1981;44:37-49. PubMed Web of Science®Google Scholar
Davis R, Emmonds SE. Spinal cord stimulation for multiple sclerosis: quantifiable benefits. Stereotact Funct Neurosurg 1992;58:52-8. Crossref CAS PubMed Web of Science®Google Scholar
Davis R. Spinal cord stimulation for multiple sclerosis and incomplete spinal cord injury. In: Krames E, Reig E, eds. The management of acute and chronic pain: the use of the tools of the trade: proceedings of the world pain conference, San Francisco, CA, July 15-21, 2000. Bologna, Italy: Monduzzi Editore, 2000:703-10. Google Scholar
Koulousakis A, Buchhaas U, Nittner K. Application of SCS for movement disorders and spasticity. Acta Neurochir Suppl (Wien) 1987;39:112-6. Crossref CAS PubMedGoogle Scholar
Kanaka TS, Kumar MMS. Neural stimulation for spinal spasticity. Paraplegia 1990;28:399-405. Crossref CAS PubMed Web of Science®Google Scholar
Cioni B, Meglio M, Prezioso A, Talamonti G, Tirendi M. Spinal cord stimulation (SCS) in spastic hemiparesis. Pacing Clin Electrophysiol 1989;12:739-42. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Cioni B, Meglio M, Zamponi A. Effect of spinal cord stimulation on motor performances in hemiplegics. Stereotact Funct Neurosurg 1989;52:42-52. Crossref CAS PubMed Web of Science®Google Scholar
Nakamura S, Tsubokawa T. Evaluation of spinal cord stimulation for postapoplectic spastic hemiplegia. Neurosurgery 1985;17:253-9. Crossref CAS PubMed Web of Science®Google Scholar
Gottlieb GL, Myklebust BM, Stefoski D, Groth K, Kroin J, Penn RD. Evaluation of cervical stimulation for chronic treatment of spasticity. Neurology 1985;35:699-704. Crossref CAS PubMed Web of Science®Google Scholar
Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Cent Nerv Syst Trauma 1986;3:129-43. Crossref CAS PubMedGoogle Scholar
Dimitrijevic MR, Dimitrijevic MM, Sherwood AM, Faganel J. Neurophysiological evaluation of chronic spinal cord stimulation in patients with upper motor neuron disorders. Int Rehabil Med 1980;2:82-5. Crossref CAS PubMedGoogle Scholar
Campos RJ, Dimitrijevic MR, Sharkey PC, Sherwood AM. Epidural spinal cord stimulation in spastic spinal cord injury patients. Appl Neurophysiol 1987;50:453-4. PubMed Web of Science®Google Scholar
Barolat-Romana G, Myklebust JB, Hemmy DC, Myklebust B, Wenninger W. Immediate effects of spinal cord stimulation in spinal spasticity. J Neurosurg 1985;62:558-62. Crossref CAS PubMed Web of Science®Google Scholar
Barolat G, Myklebust JB, Wenninger W. Effects of spinal cord stimulation on spasticity and spasms secondary to myelopathy. Appl Neurophysiol 1988;51:29-44. PubMed Web of Science®Google Scholar
Barolat G, Singh-Sahni K, Staas WE Jr, Shatin D, Ketcik B, Allen K. Epidural spinal cord stimulation in the management of spasms in spinal cord injury: a prospective study. Stereotact Funct Neurosurg 1995;64:153-64. Crossref CAS PubMed Web of Science®Google Scholar
Pinter MM, Gerstenbrand F, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 2000;38:524-31. Crossref PubMed Web of Science®Google Scholar
Midha M, Schmitt JK. Epidural spinal cord stimulation for the control of spasticity in spinal cord injury patients lacks long-term efficacy and is not cost-effective. Spinal Cord 1998;36:190– 192. Crossref CAS PubMed Web of Science®Google Scholar
Broseta J, Garcia-March G, Sánchez-Ledesma MJ, Barberá J, González-Darder J. High-frequency cervical spinal cord stimulation in spasticity and motor disorders. Acta Neurochir Suppl (Wien) 1987;39:106-11. Crossref CAS PubMedGoogle Scholar
Hugenholtz H, Humphreys P, McIntyre WMJ, Spasoff RA, Steel K. Cervical spinal cord stimulation for spasticity in cerebral palsy. Neurosurgery 1988;22:707-14. Crossref CAS PubMed Web of Science®Google Scholar
Ughratdar I, Sivakumar G, Basu S. Spinal cord stimulation to abort painful spasms of atypical stiff limb syndrome. Stereotact Funct Neurosurg 2010;88:183-6. Crossref PubMed Web of Science®Google Scholar
Dekopov AV, Shabalov VA, Tomsky AA, Hit MV, Salova EM. Chronic spinal cord stimulation in the treatment of cerebral and spinal spasticity. Stereotact Funct Neurosurg 2015;93:133-9. Crossref PubMed Web of Science®Google Scholar
Saigal R, Renzi C, Mushahwar VK. Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 2004;12:430-40. Crossref PubMed Web of Science®Google Scholar
Bamford JA, Mushahwar VK. Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog Brain Res 2011;194:227-39. Crossref PubMed Web of Science®Google Scholar
Coburn B. Electrical stimulation of the spinal cord: two dimensional finite element analysis with particular reference to epidural electrodes. Med Biol Eng Comput 1980;18:573-84. Crossref CAS PubMed Web of Science®Google Scholar
Struijk JJ, Holsheimer J, Van Veen B, Boom HBK. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng 1991;38:104-10. Crossref CAS PubMed Web of Science®Google Scholar
Manola L, Holsheimer J, Veltink P. Technical performance of percutaneous leads for spinal cord stimulation: a modeling study. Neuromodulation 2005;8:88-99. Wiley Online Library PubMed Web of Science®Google Scholar
Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation 2002;5:25-31. Wiley Online Library PubMed Web of Science®Google Scholar
Mushahwar VK, Gillard DM, Gauthier MJ, Prochazka A. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Neural Syst Rehabil Eng 2002;10:68-81. Crossref PubMed Web of Science“Google Scholar
Howard MA, Utz M, Brennan TJ et al. Intradural approach to selective stimulation in the spinal cord for treatment of intractable pain: design principles and wireless protocol. J Appl Phys 2011;110:044702. Crossref CAS Web of Science®Google Scholar
Dalm BD, Viljoen SV, Dahdaleh NS et al. Revisiting intradural spinal cord stimulation: an introduction to a novel intradural spinal cord stimulation device. Innov Neurosurg 2014;2:13-20. CrossrefGoogle Scholar
Huang Q, Oya H, Flouty OE et al. Comparison of spinal cord stimulation profiles from intra-and extradural electrode arrangements by finite element modelling. Med Biol Eng Comput 2014;52:531-38. Crossref PubMed Web of Science®Google Scholar
Flouty OE, Oya H, Kawasaki H et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One 2013;8:e56266. Crossref CAS PubMed Web of Science®Google Scholar
Viljoen S, Dalm BD, Reddy CG et al. Optimization of intradural spinal cord stimulator designs via analysis of thoracic spine imaging data. J Med Biol Eng 2013;33:193-8. Crossref Web of Science®Google Scholar
Oya H, Safayi S, Jeffery ND et al. Soft-coupling suspension system for an intradural spinal cord stimulator: biophysical performance characteristics. J Appl Phys 2013;114:164701. Crossref CAS Web of Science®Google Scholar
Viljoen S, Smittkamp CA, Dalm BD et al. MR-based measurement of spinal cord motion during flexion of the spine: implications for intradural spinal cord stimulator systems. J Med Eng Technol 2014;38:1-4. Crossref PubMedGoogle Scholar
Grosland NM, Gillies GT, Shurig R et al. Finite-element study of the performance characteristics of an intradural spinal cord stimulator. ASME J Med Devices 2014;8:041012. Crossref Web of Science®Google Scholar
Oliynyk MS, Gillies GT, Oya H, Wilson S, Reddy CG, Howard MA. Dynamic loading characteristics of an intradural spinal cord stimulator. J Appl Phys 2013;113:026103. Crossref CAS Web of Science®Google Scholar
Wilson S, Abode=Iyamah A, Miller JW et al. An ovine model of spinal cord injury. J Spinal Cord Med 2016; in press. doi.org/10.1080/10790268.2016.1222475 PubMedGoogle Scholar
Büntjen L, Voges J. Spinal cord stimulation in the treatment of spasticity. Klinisc Neurophysiol 2009;40:142=8. Crossref Web of Science®Google Scholar
Reddy CG, Dalm BD, Flouty OE, Gillies GT, Howard MA III, Brennan TJ. Comparison of conventional and kilohertz frequency epidural stimulation in patients undergoing trialing for spinal cord stimulation: clinical considerations. World Neurosurg 2016;88:586-91. Crossref PubMed Web of Science®Google Scholar
Katz RT, Rymer WZ. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil 1989;70:144-55. CAS PubMed Web of Science®Google Scholar
Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 2007;6:725-33. Crossref PubMed Web of Science®Google Scholar
Gracies J-M. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve 2005;31:535-51. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Gracies J-M. Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 2005;31:552-71. Wiley Online Library PubMed Web of Science®Google Scholar
Bajd T, Vodovnik L. Pendulum testing of spasticity. J Biomed Eng 1984;6:9-16. Crossref CAS PubMed Web of Science®Google Scholar
Powers RK, Marder-Meyer J, Rymer WZ. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol 1988;23:115-24. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Hoffmann P. Über die Beziehungen der Sehnenreflexe zur Willkürlichen Bewegung und zum Tonus. Z Biol 1918;68:351-70. Google Scholar
Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res 2000;133:233-41. Crossref CAS PubMed Web of Science®Google Scholar
Biering-Sørensen F, Nielsen JB, Klinge K. Spasticity-assessment: a review. Spinal Cord 2006;44:708-22. Crossref CAS PubMed Web of Science®Google Scholar
Voerman GE, Gregoric M, Hermens HJ. Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil Rehabil 2005;27:3368. Crossref CAS PubMed Web of Science®Google Scholar
McNeil CJ, Butler JE, Taylor JL, Gandevia SC. Testing the excitability of human motoneurons. Front Human Neurosci 2013;7:152. Crossref PubMed Web of Science®Google Scholar
Rossi L, Rasella M, Ubiali E. Method of measuring spasticity: studies of 12 cases of spastic patients treated with chronic epidural implanted electrodes. Riv Neurolog 1984;54:87-93. Web of Science®Google Scholar
Mirbagheri MM, Settle K, Harvey R, Rymer WZ. Neuromuscular abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke. J Neurophysiol 2007;98:629-37. Crossref CAS PubMed Web of Science®Google Scholar
Chardon MK, Suresh NL, Rymer WZ. An evaluation of passive properties of spastic muscles in hemiparetic stroke survivors. Conf Proc IEEE Eng Med Biol Soc 2010;2010:2993-6. PubMed Web of Science®Google Scholar
Chardon MK, Rymer WZ, Suresh NL. Quantifying the deep tendon reflex using varying tendon indentation depths: applications to spasticity. IEEE Trans Neural Syst Rehabil Eng 2014;22:280-9. Crossref PubMed Web of Science®Google Scholar
Hunter JP, Ashby P. Segmental effects of epidural spinal cord stimulation in humans. J Physiol 1994;474:407-19. Wiley Online Library CAS PubMed Web of Science®Google Scholar
Grill WM. Model-based analysis and design of waveforms for efficient neural stimulation. Prog Brain Res 2015;222:147-62.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Sean J. Nagel, Saul Wilson, Michael D. Johnson, Andre Machado, Leonardo , Matthieu K. Chardon, Chandan G. Reddy, George T. Gillies, Matthew A. Howard III
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Este artículo se distribuye bajo la licencia Creative Commons Attribution 4.0 License. A menos que se indique lo contrario, el material publicado asociado se distribuye bajo la misma licencia.