Efectos de la estimulación no invasiva de la corteza motora en las pruebas sensoriales cuantitativas en sujetos sanos y con dolor crónico: una revisión sistemática y metaanálisis.

Publicado originalmente en la Revista Pain. 2020; 161(9):1955-1975. Traducción: Dr. Raúl Otoya

Autores/as

  • Stefano Giannoni-Luza Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Kevin Pacheco-Barrios Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Alejandra Cardenas-Rojas Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Piero F. Mejia-Pando Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Maria A. Luna-Cuadros Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Judah L. Barouh Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Marina Gnoatto-Medeiros Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Ludmilla Candido-Santos Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.
  • Alice Barra Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States.
  • Wolnei Caumo Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  • Felipe Fregni Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States.

DOI:

https://doi.org/10.47924/neurotarget202175

Palabras clave:

estimulación cerebral no invasiva, estimulación magnética transcraneal, estimulación transcraneal con corriente directa, pruebas sensoriales cuantitativas

Resumen

Uno de los posibles mecanismos de la modulación del dolor por estimulación de la corteza motora, empleando técnicas de Estimulación Cerebral no Invasiva (NIBS, por sus siglas en inglés), es a través de la restauración de las vías inhibitorias del dolor endógeno que se encuentran defectuosas. Sin embargo, todavía hay datos limitados en las Pruebas Sensoriales Cuantitativas (QST, por sus siglas en inglés), incluida la Modulación del Dolor Condicionado (CPM, por sus siglas en inglés) que respalden este mecanismo. Esta revisión sistemática y metanálisis tuvo como objetivo evaluar los efectos de la estimulación cerebral no invasiva de la corteza motora sobre la percepción del dolor, de acuerdo a lo registrado por los cambios en los resultados de las QST. Con esta finalidad, se realizaron búsquedas en bases de datos -hasta julio de 2019- que incluyeron ensayos controlados aleatorios donde realizaron NIBS en la corteza motora, tanto en poblaciones sanas (controles con estimulación simulada) y / o con dolor; los resultados fueron evaluados con QST incluyendo la CPM. La calidad de los estudios se evaluó mediante la herramienta Cochrane. Calculamos el Tamaño de Efecto de Hedge de los resultados de QST y CPM, sus intervalos de confianza del 95% (IC del 95%) y realizamos metaanálisis de efectos aleatorios. Se incluyeron 38 estudios (1178 participantes). Encontramos aumentos significativos del umbral del dolor en sujetos sanos (ES = 0,16, IC del 95% = 0,02 a 0,31, I2 = 22,2%) y población con dolor (ES = 0,48, 95% IC = 0,15 a 0,80, I2 = 68,8%) y resultados de CPM homogéneos y más altos (reducción de las calificaciones del dolor) en sujetos sanos (ES = -0,39, IC del 95% = -0,64 a -0,14, I2 = 17%) y población con dolor (ES = -0,35, IC del 95% = -0,60 a -0,11, I2 = 0%) en el grupo NIBS activo comparado con el de estimulación simulada. Estos resultados apoyan la idea de la modulación descendente de las vías endógenas del dolor mediante la estimulación de la corteza motora; lo cual podría constituir uno de los principales mecanismos de reducción del dolor evaluados por las QST. Este hallazgo podría ser un biomarcador predictivo y herramienta útil para el tratamiento personalizado del dolor crónico con NIBS.

Métricas

Cargando métricas ...

Citas

Ahn H, Suchting R, Woods AJ, Miao H, Green C, Cho RY, Choi E, Fillingim RB. Bayesian analysis of the effect of transcranial direct current stimulation on experimental pain sensitivity in older adults with knee osteoarthritis: randomized sham-controlled pilot clinical study. J Pain Res 2018;11:2071-2082.

Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain stimulation 2008;1(2):97-105.

Antal A, Terney D, Kühnl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. Journal of pain and symptom management 2010;39(5):890-903.

Arendt-Nielsen L, Jiang GL, DeGryse R, Turkel CC. Intra-articular onabotulinumtoxinA in osteoarthritis knee pain: effect on human mechanistic pain biomarkers and clinical pain. Scandinavian journal of rheumatology 2017;46(4):303-316.

Arendt-Nielsen L, Yarnitsky D. Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. The Journal of Pain 2009;10(6):556-572.

Bae SH, Kim Gd Fau - Kim K-Y, Kim KY. Analgesic effect of transcranial direct current stimulation on central post-stroke pain. Tohoku J Exp Med 2014;234(3):189-95.

Bannister K, Dickenson AH. The plasticity of descending controls in pain: translational probing. The Journal of physiology 2017;595(13):41594166.

Boggio PS, Zaghi S, Lopes M, Fregni F. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 2008;15(10):1124-1130.

Borckardt JJ, Bikson M, Frohman H, Reeves ST, Datta A, Bansal V, Madan A, Barth K, George MS. A pilot study of the tolerability and effects of highdefinition transcranial direct current stimulation (HD-tDCS) on pain perception. The journal of pain : official journal of the American Pain Society 2012;13(2):112-120.

Borckardt JJ, Reeves ST, Beam W, Jensen MP, Gracely RH, Katz S, Smith AR, Madan A, Patterson D, George MS. A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters. Clin J Pain 2011;27(6):486-494.

Braulio G, Passos SC, Leite F, Schwertner A, Stefani LC, Palmer ACS, Torres ILS, Fregni F, Caumo W. Effects of Transcranial Direct Current Stimulation Block Remifentanil-Induced Hyperalgesia: A Randomized, Double-Blind Clinical Trial. Front Pharmacol 2018;9:94.

Brietzke AP, Rozisky JR, Dussan-Sarria JA, Deitos A, Laste G, Hoppe PF, Muller S, Torres IL, Alvares-da-Silva MR, de Amorim RF, Fregni F, Caumo W. Neuroplastic Effects of Transcranial Direct Current Stimulation on Painful Symptoms Reduction in Chronic Hepatitis C: A Phase II Randomized, Double Blind, Sham Controlled Trial. Frontiers in neuroscience 2015;9:498.

Castillo Saavedra L, Mendonca M, Fregni F. Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia. Medical hypotheses 2014;83(3):332-336.

Cavaleri R, Chipchase LS, Summers SJ, Schabrun SM. Repetitive transcranial magnetic stimulation of the primary motor cortex expedites recovery in the transition from acute to sustained experimental pain: a randomised, controlled study. Pain 2019;160(11):2624-2633.

Chang WJ, Bennell KL, Hodges PW, Hinman RS, Young CL, Buscemi V, Liston MB, Schabrun SM. Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: A pilot randomised controlled trial. PLoS One 2017;12(6):e0180328.

Chervyakov A V , Chernyavsky A Y , Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015;9:303.

Ciampi de Andrade D MA, Texeira MJ, Bouhassira D. Neuropharmacological basis of rTMS- induced analgesia: The role of endogenous opioids. Pain 2011;152(2):320-326.

Ciampi de Andrade D, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-D-aspartate glutamate receptors. Pain 2014;155(3):598-605.

Cirillo G DPG, Capone F, Ranieri F, Florio L, Todisco V, Tedeschi G, Funke K, Di Lazzaro V. Neurobiological after-effects of non-invasive brain stimulation. Brain stimulation 2017;10(1):1-18.

da Graca-Tarrago M, Lech M, Angoleri LDM, Santos DS, Deitos A, Brietzke AP, Torres IL, Fregni F, Caumo W. Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study. J Pain Res 2019;12:209221.

da Silva NRJ, Laste G, Deitos A, Stefani LC, Cambraia-Canto G, Torres ILS, Brunoni AR, Fregni F, Caumo W. Combined neuromodulatory interventions in acute experimental pain: assessment of melatonin and non-invasive brain stimulation. Frontiers in Behavioral Neuroscience 2015;9(77).

Dall’Agnol L, Medeiros LF, Torres ILS, Deitos A, Brietzke A, Laste G, de Souza A, Vieira JL, Fregni F, Caumo W. Repetitive Transcranial Magnetic Stimulation Increases the Corticospinal Inhibition and the Brain-Derived Neurotrophic Factor in Chronic Myofascial Pain Syndrome: An Explanatory Double-Blinded, Randomized, Sham-Controlled Trial. The Journal of Pain 2014;15(8):845-855.

DerSimonian R Fau - Laird N, Laird N. Metaanalysis in clinical trials. Control Clin Trials 1986;7(3):177-188.

Duarte D, Castelo-Branco LEC, Uygur Kucukseymen E, Fregni F. Developing an optimized strategy with transcranial direct current stimulation to enhance the endogenous pain control system in fibromyalgia. Expert review of medical devices 2018;15(12):863-873.

Flood A, Waddington G, Cathcart S. High-Definition Transcranial Direct Current Stimulation Enhances Conditioned Pain Modulation in Healthy Volunteers: A Randomized Trial. The journal of pain : official journal of the American Pain Society 2016;17(5):600-605.

Flood A, Waddington G, Keegan RJ, Thompson KG, Cathcart S. The effects of elevated pain inhibition on endurance exercise performance. PeerJ 2017;5:e3028.

Fregni F, Freedman S, Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. The Lancet Neurology 2007;6(2):188-191.

Fregni F, Macedo IC, Spezia-Adachi LN, Scarabelot VL, Laste G, Souza A, Sanches PRS, Caumo W, Torres ILS. Transcranial direct current stimulation (tDCS) prevents chronic stressinduced hyperalgesia in rats. Brain stimulation 2018;11(2):299-301.

Fregni F P-LA. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3(7):383-393.

Garcia-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Bonnefoi F, Mauguiere F, Laurent B, Sindou M. Positron emission tomography during motor cortex stimulation for pain control. Stereotactic and functional neurosurgery 1997;68(1-4 Pt 1):141-148.

Garcia-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, Convers P, Mauguiere F, Sindou M, Laurent B. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 1999;83(2):259-273.

Graff-Guerrero A, Gonzalez-Olvera J, Fresan A, Gomez-Martin D, Mendez-Nunez JC, Pellicer F. Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Brain Res Cogn Brain Res 2005;25(1):153-160.

Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JAC. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.

Hughes SW, Ali M, Sharma P, Insan N, Strutton PH. Frequency-dependent top-down modulation of temporal summation by anodal transcranial direct-current stimulation of the primary motor cortex in healthy adults. Eur J Pain 2018.

Hurley R ML. Using tDCS priming to improve brain function: Can metaplasticity provide the key to boosting outcomes? Neurosci Biobehav Rev 2017;83:155-159.

Ihle K, Rodriguez-Raecke R, Luedtke K, May A. tDCS modulates cortical nociceptive processing but has little to no impact on pain perception. PAIN® 2014;155(10):2080-2087.

Johnson S, Summers J, Pridmore S. Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain. Pain 2006;123(1-2):187-192.

Jurgens TP, Schulte A, Klein T, May A. Transcranial direct current stimulation does neither modulate results of a quantitative sensory testing protocol nor ratings of suprathreshold heat stimuli in healthy volunteers. Eur J Pain 2012;16(9):1251-1263.

Katz NP, Paillard FC, Edwards RR. Review of the performance of quantitative sensory testing methods to detect hyperalgesia in chronic pain patients on long-term opioids. Anesthesiology 2015;122(3):677-685.

Khedr EM, Omran EAH, Ismail NM, El-Hammady DH, Goma SH, Kotb H, Galal H, Osman AM, Farghaly HSM, Karim AA, Ahmed GA. Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: A double blinded, randomized clinical trial. Brain stimulation 2017;10(5):893901.

Kim YJ, Ku J, Kim HJ, Im DJ, Lee HS, Han KA, Kang YJ. Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. Ann Rehabil Med 2013;37(6):766-776.

Kniknik LM D-SJ, Rozisky JR, Torres IL, Brunoni AR, Fregni F, Caumo W. Repetitive Transcranial Magnetic Stimulation for Fibromyalgia: Systematic Review and Meta-Analysis. Pain Pract 2016;16(3):294-304.

Lamusuo S, Hirvonen J, Lindholm P, Martikainen IK, Hagelberg N, Parkkola R, Taiminen T, Hietala J, Helin S, Virtanen A, Pertovaara A,

Jaaskelainen SK. Neurotransmitters behind pain relief with transcranial magnetic stimulation positron emission tomography evidence for release of endogenous opioids. Eur J Pain 2017;21(9):1505-1515.

Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis research & therapy 2011;13(2):211-211.

Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology 2014;125(11):2150-2206.

Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Schecklmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017;128(1):56-92.

Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 2006;67(9):15681574.

Lewis GN HL, Rice DA, Rome K, McNair PJ. Reliability of the conditioned pain modulation paradigm to assess endogeneous inhibitory pain pathways. Pain Res Manag 2012;17(2):98- 102.

Lewis GN, Rice DA, Kluger M, McNair PJ. Transcranial direct current stimulation for upper limb neuropathic pain: A double-blind randomized controlled trial. Eur J Pain 2018;22(7):1312-1320.

Lima MC FF. Motor cortex stimulation for chronic pain: systematic review and meta-analysis. Neurology 2008;70(24):2329-2337.

Marcuzzi A, Wrigley PJ, Dean CM, Adams R, Hush JM. The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals. Pain 2017;158(7):1217-1223.

Mendoca ME SM, Grecco LC, Battistella LR, Baptista AF, Fregni F. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromylagia: A Randomized Placebo-Controlled Clinical Trial. Frontiers in human neuroscience 2016;10(68).

Mendonca ME, Santana MB, Baptista AF, Datta A, Bikson M, Fregni F, Araujo CP. Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high- resolution computational models. The journal of pain : official journal of the American Pain Society 2011;12(5):610-617.

Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine 2009;6(7):e1000097.

Moisset X, Goudeau S, Poindessous-Jazat F, Baudic S, Clavelou P, Bouhassira D. Prolonged continuous theta-burst stimulation is more analgesic than 'classical' high frequency repetitive transcranial magnetic stimulation. Brain stimulation 2015;8(1):135-141.

Moloney TM, Witney AG. Transcranial direct current stimulation (tDCS) priming of 1Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pain thresholds. Neurosci Lett 2013;534:289-294.

Mylius V, Reis J, Knaack A, Haag A, Oertel WH, Rosenow F, Schepelmann K. High-frequency rTMS of the motor cortex does not influence the nociceptive flexion reflex but increases the unpleasantness of electrically induced pain. Neurosci Lett 2007;415(1):49-54.

Nir RR YD. Conditioned pain modulation. Curr Opin Support Palliat Care 2015;9(2):131-137.

O'Brien AT, Deitos A, Trinanes Pego Y, Fregni F, Carrillo-de-la-Pena MT. Defective Endogenous Pain Modulation in Fibromyalgia: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation Paradigms. J Pain 2018;19(8):819836.

O'Brien AT, El-Hagrassy MM, Rafferty H, Sanchez P, Huerta R, Chaudhari S, Conde S, Rosa G, Fregni F. Impact of Therapeutic Interventions on Pain Intensity and Endogenous Pain Modulation in Knee Osteoarthritis: A Systematic Review and Meta-analysis. Pain medicine (Malden, Mass) 2019;20(5):1000-1011.

O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. The Cochrane database of systematic reviews 2018;4:Cd008208.

Oliveira LB, Lopes TS, Soares C, Maluf R, Goes BT, Sa KN, Baptista AF. Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial. J Oral Rehabil 2015;42(10):723-732.

Ossipov MH, Morimura K Fau - Porreca F, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care 2014;8(2):143-151.

Reidler JS, Mendonca ME, Santana MB, Wang X, Lenkinski R, Motta AF, Marchand S, Latif L, Fregni F. Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects. J Pain 2012;13(5):450-458.

Ribeiro H, Sesterhenn RB, Souza A, Souza AC, Alves M, Machado JC, Burger NB, Torres I, Stefani LC, Fregni F, Caumo W. Preoperative transcranial direct current stimulation: Exploration of a novel strategy to enhance neuroplasticity before surgery to control postoperative pain. A randomized sham-controlled study. PLoS One 2017;12(11):e0187013.

Rogatgi A. WebPlotDigitizer, Vol. 2019, 2011.

Roldan CJ, Abdi S. Quantitative sensory testing in pain management. Pain Manag 2015;5(6):483491.

Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Botefur IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihofner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006;123(3):231-243.

Souto G, Borges Ic Fau - Goes BT, Goes Bt Fau - de Mendonca ME, de Mendonca Me Fau Goncalves RG, Goncalves Rg Fau - Garcia LB, Garcia Lb Fau - Sa KN, Sa Kn Fau - Coutinho MR, Coutinho Mr Fau - Galvao-Castro B, GalvaoCastro B Fau - Fregni F, Fregni F Fau - Baptista AF, Baptista AF. Effects of tDCS-induced motor cortex modulation on pain in HTLV-1: a blind randomized clinical trial. Clin J Pain 2014;30(9):809-815.

Starkweather AR, Heineman A, Storey S, Rubia G, Lyon DE, Greenspan J, Dorsey SG. Methods to measure peripheral and central sensitization using quantitative sensory testing: A focus on individuals with low back pain. Applied Nursing Research 2016;29:237-241.

Tavares DRB, Okazaki JEF, Rocha AP, Santana MVA, Pinto A, Civile VT, Santos FC, Fregni F, Trevisani VFM. Effects of Transcranial Direct Current Stimulation on Knee Osteoarthritis Pain in Elderly Subjects With Defective Endogenous Pain-Inhibitory Systems: Protocol for a Randomized Controlled Trial. JMIR research protocols 2018;7(10):e11660.

Tracey I, Mantyh PW. The Cerebral Signature for Pain Perception and Its Modulation. Neuron 2007;55(3):377-391.

Vaseghi B, Zoghi M, Jaberzadeh S. Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2014;125(9):1847-1858.

Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur J Neurosci 2015;42(7):2426-2437.

Vaseghi B, Zoghi M, Jaberzadeh S. How Does Anodal Transcranial Direct Current Stimulation of the Pain Neuromatrix Affect Brain Excitability and Pain Perception? A Randomised, Double-Blind, Sham-Control Study. PLOS ONE 2015;10(3):e0118340.

Villamar MF, Wivatvongvana P, Patumanond J, Bikson M, Truong DQ, Datta A, Fregni F. Focal modulation of the primary motor cortex in fibromyalgia using 4x1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation. The journal of pain : official journal of the American Pain Society 2013;14(4):371-383.

Yam MF, Loh YA-O, Tan CA-O, Khadijah Adam S, Abdul Manan N, Basir R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci 2018;19(8). pii: E2164.

Zandieh A, Parhizgar SE, Fakhri M, Taghvaei M, Miri S, Shahbabaie A, Esteghamati S, Ekhtiari H. Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals. Neuromodulation 2013;16(4):345-3

Descargas

Publicado

2021-10-10

Cómo citar

1.
Giannoni-Luza S, Pacheco-Barrios K, Cardenas-Rojas A, Mejia-Pando PF, Luna-Cuadros MA, Barouh JL, et al. Efectos de la estimulación no invasiva de la corteza motora en las pruebas sensoriales cuantitativas en sujetos sanos y con dolor crónico: una revisión sistemática y metaanálisis.: Publicado originalmente en la Revista Pain. 2020; 161(9):1955-1975. Traducción: Dr. Raúl Otoya. NeuroTarget [Internet]. 10 de octubre de 2021 [citado 4 de diciembre de 2024];15(3):45-70. Disponible en: https://neurotarget.com/index.php/nt/article/view/75

Número

Sección

Artículos Especiales