Safe approach to the subthalamic nucleus impact of the parasagital angle greater than 20 degrees.

Authors

  • Nelson Ernesto Quintanal Cordero Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba. https://orcid.org/0000-0003-3812-5899
  • Rafael Rodríguez Rojas Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.
  • Maylen Carballo Barreda Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.
  • Iván García Maeso Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.
  • Juan Teijeiro Amador Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.
  • Raúl Macías González Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.
  • Karla Batista García-Ramó Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.
  • Ivón Pedroso Ibáñez Centro Internacional de Restauración Neurológica. (CIREN). La Habana. Cuba.

DOI:

https://doi.org/10.47924/neurotarget201962

Keywords:

Ablative surgery, Parkinson disease, subthalamic nucleus, subthalamotomy

Abstract

Objective: To evaluate the precision, effectiveness and safety in the identification and lesion of subthalamic nucleus using a new surgical strategy, guided by images and multi-unit deep brain electrical recording. Special attention was given to ventricular dilation and cerebral atrophy in relation to electrode trajectory and the accuracy of the surgical target’s location.

Method: A prospective study for the identification and lesion of subthalamic nucleus in 49 surgeries performed at the same number of patients with Parkinsons disease. The method for locating the surgical target was based on images of stereotactic computed tomography, multi-unit deep brain electrical recording with semimicroelectrode and electrical micro-stimulation. The recommended parasagittal trajectory was modified for this type of procedure that is between 0 and 15 degrees, at a value equal to or greater than 20 degrees in the first recording trajectory, with the aim of avoiding the lateral ventricle, blood vessels and brain grooves. The trajectories of the electrodes were analyzed in the postoperative magnetic resonance imaging of the skull. Statistical methods were used to assess the effectiveness of the procedure for the location and lesion of the surgical target.

Results: The electrical activity of the subthalamic nucleus was identified in the first trajectory of multi-unit brain recording in 83.7% of the procedures. The average number of trajectories per procedure was 5 and the paths necessary for subthalamic nucleus lesion were 2. The mean parasagittal angle on the first path was 21.72 degrees, with a minimum of 20 degrees and a maximum of 27.5.

Conclusions: The method of anatomical and electrophysiological location used, following a parasagittal angle equal to or greater than 20 degrees, is effective and surgically safe to identify the subthalamic nucleus and perform its lesion in patients with Parkinson disease, thus avoiding the ventricular system, blood vessels and brain grooves.

Metrics

Metrics Loading ...

References

Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, et al. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. Journal of neurosurgery. 2000;92(4):615-25.

Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery. 1999;45(6):1375-82; discussion 82-4.

Kumar R, Lozano AM, Montgomery E, Lang AE. Pallidotomy and deep brain stimulation of the pallidum and subthalamic nucleus in advanced Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society. 1998;13 Suppl 1:73-82.

Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Annals of neurology. 1997;42(3):283-91.

Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet (London, England). 1995;345(8942):91-5.

Limousin P, Pollak P, Hoffmann D, Benazzouz A, Perret JE, Benabid AL. Abnormal involuntary movements induced by subthalamic nucleus stimulation in parkinsonian patients. Movement disorders : official journal of the Movement Disorder Society. 1996;11(3):231-5.

Molinuevo JL, Valldeoriola F, Valls-Sole J. Usefulness of neurophysiologic techniques in stereotactic subthalamic nucleus stimulation for advanced Parkinson’s disease. Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology. 2003;114(10):1793-9.

Pollak P, Benabid AL, Limousin P, Benazzouz A. Chronic intracerebral stimulation in Parkinson’s disease. Advances in neurology. 1997;74:213-20.

Starr PA, Vitek JL, DeLong M, Bakay RA. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery. 1999;44(2):303-13; discussion 13-4.

Yokoyama T, Sugiyama K, Nishizawa S, Yokota N, Ohta S, Uemura K. Subthalamic nucleus stimulation for gait disturbance in Parkinson’s disease. Neurosurgery. 1999;45(1):41-7; discussion 7-9.

Hamani C, Florence G, Heinsen H, Plantinga BR, Temel Y, Uludag K, et al. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eNeuro. 2017;4(5).

Guridi J, Rodriguez-Rojas R, Carmona-Abellan M, Parras O, Becerra V, Lanciego JL. History and future challenges of the subthalamic nucleus as surgical target: Review article. Movement disorders : official journal of the Movement Disorder Society. 2018;33(10):1540-50.

Bari AA, Fasano A, Munhoz RP, Lozano AM. Improving outcomes of subthalamic nucleus deep brain stimulation in Parkinson’s disease. Expert review of neurotherapeutics. 2015;15(10):1151-60.

Steigerwald F, Muller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Movement disorders : official journal of the Movement Disorder Society. 2016;31(8):1240-3.

Singh M, Shabari Girishan KV, Bajaj J, Garg K. Deep brain stimulation for movement disorders: Surgical nuances. Neurology India. 2018;66(Supplement):S122-s30.

Starr PA, Vitek JL, Bakay RA. Ablative surgery and deep brain stimulation for Parkinson’s disease. Neurosurgery. 1998;43(5):9891013; discussion -5.

Alvarez L, Macias R, López G, Alvarez E, Pavón N, RodriguezOroz MC, et al. Bilateral subthalamotomy in Parkinson’s disease: initial and long-term response. Brain : a journal of neurology. 2005;128(Pt 3):570-83.

López-Flores G, Miguel-Morales J, Teijeiro-Amador J, Vitek J, Pérez-Parra S, Fernández-Melo R, et al. Anatomic and neurophysiological methods for the targeting and lesioning of the subthalamic nucleus: Cuban experience and review. Neurosurgery. 2003;52(4):817-30; discussion 31.

Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, Rodriguez R, et al. Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. Journal of neurology, neurosurgery, and psychiatry. 2009;80(9):979-85.

Martinez-Fernandez R, Rodriguez-Rojas R, Del Alamo M, Hernandez-Fernandez F, Pineda-Pardo JA, Dileone M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. The Lancet Neurology. 2018;17(1):54-63.

Volkmann J. Subthalamotomy for Parkinson’s disease: back to the future? The Lancet Neurology. 2018;17(1):23-4.

Rodriguez-Rojas R, Carballo-Barreda M, Alvarez L, Guridi J, Pavon N, Garcia-Maeso I, et al. Subthalamotomy for Parkinson’s disease: clinical outcome and topography of lesions. Journal of neurology, neurosurgery, and psychiatry. 2018;89(6):572-8.

Yoon MS, Munz M. Placement of deep brain stimulators into the subthalamic nucleus. Stereotactic and functional neurosurgery. 1999;72(2-4):145-9.

Guridi J, Obeso JA. The role of the subthalamic nucleus in the origin of hemiballism and parkinsonism: new surgical perspectives. Advances in neurology. 1997;74:235-47.

Tamir I, Marmor-Levin O, Eitan R, Bergman H, Israel Z. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease. World neurosurgery. 2017;106:450-61.

Alvarez L, Macias R, Guridi J, Lopez G, Alvarez E, Maragoto C, et al. Dorsal subthalamotomy for Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 2001;16(1):72-8.

Pedroso Ibáñez I ÁGL, Macías R, López Flores G, RodríguezRojas R, Tejeiro Amador J, Álvarez González E, Maragoto C, Padrón A, Díaz de la Fé A. Cirugía lesional como alternativa de tratamiento quirúrgico en la enfermedad de Parkinson (EP). Experiencia del CIREN a largo plazo. Rev Mex Neuroci. 2006;7(6):562-72.

Teijeiro J, Macias RJ, Maragoto C, Garcia I, Alvarez M, Quintanal NE. [Deep brain recording and length of surgery in stereotactic and functional neurosurgery for movement disorders]. Neurocirugia (Asturias, Spain). 2014;25(3):116-27.

Gill SS, Heywood P. Bilateral dorsolateral subthalamotomy for advanced Parkinson’s disease. Lancet (London, England). 1997;350(9086):1224.

Su PC, Tseng HM, Liu HM, Yen RF, Liou HH. Subthalamotomy for advanced Parkinson disease. Journal of neurosurgery. 2002;97(3):598-606.

Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, et al. Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. Journal of neurosurgery. 2009;110(6):1283-90.

Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. Journal of neurosurgery. 2012;116(1):84-94.

Quintanal NE, Rodriguez Rojas R. Safe approach to the subthalamic nucleus. 17th Quadrennial Meeting of the World Society for Stereotactic and Functional Neurosurgery. Berlin, Germany, June 26-29, 2017: Abstracts. Stereotactic and functional neurosurgery. 2017;95 Suppl 1:1-460.

Ríos AS, García JFP, Zaldivar LAO, Flores GL, Glez JLF, Figueredo EG, et al. DISEÑO, CONSTRUCCIÓN Y EXPLOTACIÓN DE UN SISTEMA ESTEREOTÁXICO.

Carballo M, Rodríguez R, López G, Torres A. Sistema tridimensional de planeamiento quirúrgico para PC. Ingeniería Electrónica, Automática y comunicaciones. 2005;26:19-23.

Teijeiro Amador J, Macías González R. Sistema computarizado de registro cerebral profundo como guía neuroquirúrgica en trastorno del movimiento. Rev Mex Neuroci. 2005;6(5):393-8.

Mazzone P, Stefani A, Viselli F, Scarnati E. Frameless Stereotaxis for Subthalamic Nucleus Deep Brain Stimulation: An Innovative Method for the Direct Visualization of Electrode Implantation by Intraoperative X-ray Control. Brain sciences. 2018;8(5).

Parsons TD, Rogers SA, Braaten AJ, Woods SP, Troster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. The Lancet Neurology. 2006;5(7):578-88.

Volkmann J, Daniels C, Witt K. Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nature reviews Neurology. 2010;6(9):487-98.

Witt K, Granert O, Daniels C, Volkmann J, Falk D, van Eimeren T, et al. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain: a journal of neurology. 2013;136(Pt 7):2109-19.

Isler C, Albi A, Schaper FL, Temel Y, Duits A. Neuropsychological Outcome in Subthalamic Nucleus Stimulation Surgeries with Electrodes Passing through the Caudate Nucleus. Stereotactic and functional neurosurgery. 2016;94(6):413-20.

Published

2019-12-01

How to Cite

1.
Quintanal Cordero NE, Rodríguez Rojas R, Carballo Barreda M, García Maeso I, Teijeiro Amador J, Macías González R, et al. Safe approach to the subthalamic nucleus impact of the parasagital angle greater than 20 degrees. NeuroTarget [Internet]. 2019 Dec. 1 [cited 2025 Sep. 17];13(3):9-17. Available from: https://neurotarget.com/index.php/nt/article/view/62