Innovations in Magnetic Resonance Imaging: Potential of Multivoxel Spectroscopy

Authors

  • Cristian Carlos Guerci Faculty of Medicine and Health Sciences, Interamerican Open University. Argentina.
  • Facundo Correa Faculty of Medicine and Health Sciences, Interamerican Open University. Argentina

DOI:

https://doi.org/10.47924/neurotarget2024455

Keywords:

Magnetic Resonance Spectroscopy, Neuroimaging, Brain Neoplasms, Cerebral Infarction, Metabolic Diseases

Abstract

Background: Multivoxel Magnetic Resonance Spectroscopy (MRS) has emerged as a cutting-edge technique in the neuroimaging field. Its unique capability to provide detailed chemical analysis of brain tissue has significant clinical utility, including the differentiation of various types of brain tumors through distinctive spectroscopic profiles, such as choline presence in gliomas or lactate peaks in highly aggressive tumors, as well as the early detection of neurodegenerative diseases, where metabolic changes often precede structural changes visible in conventional MRI images.
Material and methods: The investigation was grounded on a systematic review methodology, coupled with a critical analysis of selected case studies. A comprehensive database search was conducted to accumulate relevant articles and studies, which were then synthesized and critically examined for in-depth analysis.
Results: MRS provides unparalleled insight into the chemical composition of brain tissue, differentiating itself from other neuroimaging techniques such as Positron Emission Tomography (PET) and functional MRI (fMRI), which indirectly measure brain activity via blood flow or glucose consumption. MRS is instrumental in elucidating the biochemical processes underpinning neurological diseases by identifying and quantifying specific metabolites. Conclusion: Despite its numerous benefits, the implementation of MRS faces technical and practical challenges, including artifacts from magnetic field inhomogeneity or patient movement that can affect spectrum quality, and the requirement of substantial expertise for spectroscopic data interpretation, which confines its use to specialized centers. Addressing these obstacles is crucial for the broader adoption of this technology in clinical settings.

Metrics

Metrics Loading ...

References

Surur A, Cabral JF, Marangoni A, Marchegiani S, Palacios C, Herrera E, et al. Aportes de la espectroscopía por resonancia magnética en las lesiones cerebrales. 2010.

Liang MZ, Tang Y, Chen P, Tang XN, Knobf MT, Hu GY, et al. Brain connectomics improve prediction of 1year decreased quality of life in breast cancer: A multi-voxel pattern analysis. Eur J Oncol Nurs Off J Eur Oncol Nurs Soc. febrero de 2024;68:102499.

Li J, Guo B, Cui L, Huang H, Meng M. Dissociated modulations of multivoxel activation patterns in the ventral and dorsal visual pathways by the temporal dynamics of stimuli. Brain Behav. 4 de junio de 2020;10(7):e01673.

Tal A, Zhao T, Schirda C, Hetherington HP, Pan JW, Gonen O. Fast, regional three-dimensional hybrid (1D-Hadamard 2D-rosette) proton MR spectroscopic imaging in the human temporal lobes. NMR Biomed. junio de 2021;34(6):e4507.

Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594-g7594.

Mangalore S, Kumar M, Pal P, Saini J, Pasha S, Yadav R. Role of Multivoxel MR Spectroscopy Progressive Supranuclear Palsy-A Preliminary Study. Neurol India. 2022;70(6):2388.

Okamoto K, Watanabe H, Umeda M, Oda M, Kanamatsu T, Tsukada Y, et al. Multivoxel Metabolic Rate Measure-ment in Human Brain Following Oral Administration of [113 C] glucose with 2-T Highly Sensitive 13 C-MRS System.

Fayed Miguel N, Morales Ramos H, Modrego Pardo PJ. Resonancia magnética con espectroscopia, perfusión y difusión cerebral en el diagnóstico de los tumores cerebrales. Rev Neurol. 2006;42(12):735.

Neural representations of haptic object size in the human brain revealed by multivoxel fMRI patterns [Internet]. [citado 28 de febrero de 2024]. Disponible en: https://journals.physiology.org/doi/epdf/10.1152/jn.0016.2020

Doose A, Tam FI, Hellerhoff I, King JA, Boehm I, Gottloeber K, et al. Triangulating brain alterations in anorexia nervosa: a multimodal investigation of magnetic resonance spectroscopy, morphometry and bloodbased biomarkers. Transl Psychiatry. 12 de agosto de 2023;13:277.

Christidi F, Karavasilis E, Argyropoulos GD, Velonakis G, Zouvelou V, Murad A, et al. Neurometabolic Alterations in Motor Neuron Disease: Insights from Magnetic Resonance Spectroscopy. J Integr Neurosci. 24 de abril de 2022;21(3):87.

Verburg N, Koopman T, Yaqub MM, Hoekstra OS, Lammertsma AA, Barkhof F, et al. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro-Oncol. marzo de 2020;22(3):412-22.

Multiparametric MR Imaging of Diffusion and Perfusion in Contrastenhancing and Nonenhancing Components in Patients with Glioblastoma [Internet]. [citado 28 de febrero de 2024]. Disponible en: https://pubs.rsna.org/doi/epdf/10.1148/radiol.2017160150

Majós C. Espectroscopia por resonancia magnética de protón en el diagnóstico de tumores cerebrales. Radiología. enero de 2005;47(1):1-12.

Taschereau-Dumouchel V, Kawato M, Lau H. Multivoxel pattern analysis reveals dissociations between subjective fear and its physiological correlates. Mol Psychiatry. 2020;25(10):2342-54.

Nelson SJ. Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med. 2001;46(2):228-39.

Li BSY, Gonen O. Multivoxel 1HMRS to the Edge of the Human Brain: Intrinsic Lipids Suppression at High Magnetic Fields.

Dorrius MD, Pijnappel RM, van der Weide Jansen MC, Jansen L, Kappert P, Oudkerk M, et al. The added value of quantitative multi-voxel MR spectroscopy in breast magnetic resonance imaging. Eur Radiol. 2012;22(4):915-22.

Published

2024-06-05

How to Cite

1.
Guerci CC, Correa F. Innovations in Magnetic Resonance Imaging: Potential of Multivoxel Spectroscopy. NeuroTarget [Internet]. 2024 Jun. 5 [cited 2024 Sep. 16];18(1):32-6. Available from: https://neurotarget.com/index.php/nt/article/view/455