Tuberous sclerosis: molecular pathogenesis and animal models
DOI:
https://doi.org/10.47924/neurotarget2006440Abstract
Mutations in one of two genes, TSC1 or TSC2, result in a disease of similar phenotype by disrupting the normal interaction of their protein products, hamartin and tuberin, which form a functional complex of intracellular signals. Disruption of these genes in the brain results in abnormal cell differentiation, proliferation, and migration, giving rise to brain lesions characteristic of tuberous sclerosis complex called cortical tuberosities. The most devastating complications of tuberous sclerosis complex affect the central nervous system and include epilepsy, mental retardation, autism, and glial tumors. Relevant animal models, such as knocked out mice, are valuable tools for studying the normal functions of hamartin and tuberin and how disruption of their expression gives rise to the variety of clinical features that characterize tuberous sclerosis complex. In the future, these animals will be very valuable preclinical models for the development of highly specific and effective treatments for children affected with tuberous sclerosis complex.
Metrics
References
Asano E, Chugani DC, Muzic O, et al: Autism in Tuberous sclerosis complex is related to both cortical and subcortical dysfunction. Neurology 2001;51:1269-1267.
Benvenuto G, Li S, Brown SJ, et al: The tuberous sclerosis-1 (TSC) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 2000;19:6306-6316.
Castro AR, Rebhun JF, Clarck CJ, Quilliam LA: Rheb binds TSC2 and promotes S6 kinase activation in a rapamycin and farnesylation dependent manner. J Biol Chem 2003;278:32493-32496.
Cheadle JP, Reeve MP, Sampson JR, Kwiatkowski DJ: Molecular genetic advances in tuberous sclerosis. Hum Genet 2000; 107:1135-1138.
Clark GJ, Kinch MS, Rogers-Graham K, et al: The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem 1997;272:10608-10615.
Crino PB, Dichter MA, Trojanowsky JQ, Eberwine J: Embryonic neuronal markers in tuberous sclerosis: Single cell molecular pathology.Proc Natl Acad Sci USA 1995;93:14152-14157.
Curatolo P, Seri S, Verdecchia M, Bombardieri R: Infantile spasms in tuberous sclerosis complex. Brain Dev 2001;23:502-507.
Curatolo P: Neurological manifestations of tuberous sclerosis complex. Chils nerv syst 1996;12;515-521.
Cusmai R, Chiron C, Curatolo P, et al: Topographic comparative study of MRI and EEG in 34 children with tuberous sclerosis. Epilepsia 1990;31:747- 755.
Dabora SL, Joswiak S, Franz DN, et al: Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 2001;68:64-80.
Dan HC, Sun M, Yang L, et al: Phosphatidylinositol-3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorilation of tuberin. Jbiol Chem 2002;4:648-657.
European Chomosome 16 Tuberous Sclerosis Consortium: Identification and characterization of the tuberous sclerosis gene on Chromosome 16. Cell 1993;75:1305-1315.
Fero ML, Rivkin M, Tasch M, et al: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis and female sterility in p27(Kip1)- deficient mice. Cell1996;85:733-744.
Fingar DC, Salama S, Tsou C, et al: Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002;16:1472-1487.
Gao X, Pan D: TSC1 and TSC2 tumor suppressors antagonize insulilin signalin in cell growth. Genes Dev 2001;5:1383-1392.
Gao X, Zhang Y, Arrazola P, et al: Tsc tumor suppressor proteins antagonize aminoacid-TOR signaling. Nat Cell Biol 2002;4: 699-704.
Garami A, Zwartkruis FJT, Nobukuni T, et al: Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling is inhibited by TSC1 and 2. Mol Cell 2003;11:1457-1466.
Gingras A, Kennedy SG, O’Leary MA, et al: 4E-PB1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev1998;12:502-513.
Gomez MR, Sampson JR, Whitemore VH: Tuberous sclerosis, 3rd ed. New York, Oxford University Press, 1999.
Goodman M, Lamm SH, Engel A, et al:Cortical tuber count: a biomarker indicating neurologic severity of tuberous sclerosis complex. J Child Neurol 1997;12:85-90.
Gutman DH, Zhang Y, Hasbani MJ, et al: Expresión of the tuberous sclerosis complex gene products, hamartin and tuberin in central nervous system tissues.acta neuropathol (Berl) 2000;5:276-286.
Haluska P, Dy GK, Adjei AA: Farnesyl transferase inhibitors as anti-cancer agents.Eu J Cancer 2002;38:1685-1700
Hancock E, Osborne JP: Vigabatrin in the treatment of infantile spasms in tuberous sclerosis: Literature review. J child Neurol. 1999;41:123-126.
Henske EP, Scheithauer BW, Short MP, et al: Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions.Am J Hum Genet 1996;59:400-406.
Hodges AK, Li S, Maynard J, et al: Pathologic mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Hum Mol Genet 2001;159:217-224.
Huang H, Potter CJ,Tao W, et al: PTEN affects cell size, cell proliferation, and apoptosis during Drosophila eye development.Development 1999;126:5365-5372.
Inoki K, Li Y,Zhu T, et al: TSC2 is phosphorylated and inhibited by Akt and suppresses mTor signaling. Nat Cell Biol 2002; 4:648-657.
Ito N, Rubin GM: gigas, Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle.Cell 1999;96:529-539.
Jacob HJ, Kwitek AE: Rat genetics attaching physiology and pharmachology to the genome. Nat Rev Genet 2002;3:33-42.
Jonhson C, O’Callaghan FJ, Osborne JP, et al: Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 2003;33:335-344.
Kobayashi T, Minowa O, Kuno J, et al: Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999;59:1206-1211.
Kobayashi T, Minowa O, Sugitani Y, et al: A germ line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 2001;98:8762-8767.
Kwiatkowsky DJ, Zhang H, Bandura JL,et al: A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas and upregulation of p70S6 kinase activity in TSC1 null cells. Hum mol Genet 2002;11:525-534.
Kwiatkowsky DJ:Tuberous sclerosis: From tubers to mTor. Ann Hum Genet 2003;67:87-96.
Lee A, Maldonado M, Baybis M, et al:Markers of cellular proliferation are expressed in cortical tubers. Ann Neurol 2003;53:668-673.
Macleod KF, Jacks T: Insights into cancer from trangenic mouse models. J Pathol 1999;187:43-60.
Milolosa A, Rosner M, Nellist M, et al: The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum Mol Genet 2000;9:1721-1727.
Mirkin LD, Ey EH, Chaparro M: Congenital subependimal giant cell astrocytoma.: Case report with prenatal ultrasonogram.pediatr radiol 1999;29:776-780.
Mizuguchi M, Kato M, Yamanouchi H, et al:Tuberin immunohistochemistry in brain, kidneys and heart with or without tuberous sclerosis. Acta neuropathol (berl) 1997;94:525-531.
Mizuguchi M, Takashima S: Neuropathology of tuberous sclerosis. Brain dev 2001;23:508-515.
Niida Y, Stemer-Rahamimov AO, Logrip M, et al: Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mecanisms for patogénesis of TSC lesions. Am Hum Genet 2001;69:493-503.
Onda H, Crino PB, Zhang H, et al: TSC2 null neuroepithelial cells are a model for human tuber giant cells and show activation of an mTor pathway.Mol cell Neurosci 2002;21:561-574.
Park SH, Pepkowitz SH, Kerfoot C, et al: Tuberous sclerosis in a 20week gestation fetus:Immunohistochemical study. Acta Neuropathol (Berl) 1997;94: 180-186.
Patel PH, Thapar N, Guo L, et al: Drosophila Rheb GTPase is required for cell cycle progression and growth control. J cell Sci 2003;116:3601-3610.
Plank TL, Yeung RS, Henske EP: Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer res 1998;58:4766-4770.
Potter CJ, Huang H, Xu T: Drosophila TSC1 functions with TSC2 to antagonize insulin signaling regulating cell growth, cell proliferation and organ size. Cell 2001;105:357-368.
Potter CJ, Pedraza LG, Xu T: Akt regulates growth by directly phosphorilating TSC2. Nat cell boil 2002;4:658-665.
Povey S, Burley MW, Attwood J, et al:Two loci for tuberous sclerosis: one on 9q34 and one on 16p13.Ann Hum Genet 1994;58:107-127.
Ramesh V:Aspects of tuberous sclerosis complex (TSC) protein function in the brain.Biochem Soc Trans 2003;31:579-583.
Saucedo LJ, Gao X, Chiarelli DA, et al: Rheb promotes cell growth as component of the insulin Rheb signaling network. Nat Cell Biol 2003;5:566-571.
Shepard CW, Houser OW, Gomez MR: MR findings in Tuberous Sclerosis Complex and correlation with seizure development and mental impairment. AJNR Am J Neuroradiol 1995;16:149-155.
Shepard CW, Scheithauer BW, Gomez MR, et al: Subependimal giant cell astrocytoma: A clinical, pathologic, and flow cytometry. Neurosurgery 1991;38:864-868.
Soucek T, Holzl G, Bernaschek G, Hengtschlager M: A role of the tuberous sclerosis gene-2 product during neuronal differenciation. Oncogene 1998;16:2197-2204.
Soucek T, Pusch O, Wienecke R, et al: Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces cells to enter S phase. J Biol Chem 1997;272:29301-29308.
Stocker H, Radimersky, Schindelholz B, et al: Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003;5:559-565.
Stoker H, Hafen E: Genetic control of cell size. Curr Opin Genet Dev 2000;10:529-535.
Tee AR, Fingar DC, Manning BD, et al: Tuberous sclerosis complex-1 and 2 gene products function together to inhibit mammalian target of rapamycin (mTor)-mediated downstream signaling. Proc Natl Acad Sci USA 2002;99:13571-13576.
Uhlmann EJ, Apicelli AJ, Baldwin RL, et al: Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decrease p27Kip1 expression in TSC2+/- cells. Oncogene 2002;21:4050-4059.
Van Slegtenhorst M, de Hoogt R, Hermans C, et al: Identification of the tuberous sclerosis gene TSC 1 on chromosome 9q34. Science 1997;277:805-808.
Van Slegtenhorst M, Nellist M, Nagelkerken B, et al: Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet. 1998;7:1053-1057.
Wienecke R, Guha A, Maize JC, et al: Reduced TSC2 RNA and protein in sporadic astrocytomas and ependymomas.Ann Neurol 1997;15:1611-1616.
Yeung RS, Katsetos CD, Klein-Szanto A: Subependymal astrocytic hamartomas of the Eker rat model of tuberous sclerosis. Am J Pathol 1997;151:1477-1486.
Yeung RS, Xiau GH, Jin F, et al:Predisposition to renal carcinoma in Eker rat is determined by germline mutation of the tuberous sclerosis (TSC2) gene. Proc Natl Acad Sci U S A 1994;91:11413-11416.
Zhang Y, Gao X, Saucedo LJ, et al: Rheb is a direct target of the tuberous sclerosis tumor supressor proteins. Nat Cell Biol 2003;5:578-581.
Bebin EN, Kelly PJ, Gomez MR. Surgical treatment for epilepsy in cere- bral tuberous sclerosis. Epilepsia. 1993 Jul-Aug;34(4):651-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 Leandro Piedimonte

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.