Computerized Deep Brain Recording System (NDRS) for stereotactic and functional neurosurgery

Authors

  • Juan Teijeiro International Center for Neurological Restoration (CIREN)
  • Raúl J. Macías International Center for Neurological Restoration (CIREN)
  • Lázaro M. Alvarez International Center for Neurological Restoration (CIREN)
  • Carlos Maragoto International Center for Neurological Restoration (CIREN)
  • Iván García International Center for Neurological Restoration (CIREN)

DOI:

https://doi.org/10.47924/neurotarget2010306

Keywords:

stereotactic and functional neurosurgery, deep brain recording, anatomophysiologic correlation, computer-guided surgery, signal processing

Abstract

Introduction: A neurophysiologic guide such as deep brain recording is required in stereotactic and functional neurosurgery for higher safety and effectiveness.

Materials and Method: By applying the current digital and software engineering technology, successive versions of the NDRS software has been developed for signal registration, visualization, recording and processing with a personal computer and also graphic and automatic facilities has been incorporated for anatomophysiologic correlation analysis and final therapeutic action planning.

Results: From 1993 to 2009 the NDRS has been used in Cuba in ablative stereotactic and functional neurosurgery for movement disorders, and since 1996, also in Spain to guide implantation of deep brain stimulation electrodes. In total so far this program has been used in over 1,000 surgeries for movement disorders, with an average of four electrophysiologic recording electrode tracks per surgery, less than 15 minutes per track and with a postoperative clinical effectiveness similar to that internationally reported by other groups.

Discussion: The graphic and automatic NDRS facilities for signal processing, the anatomophysiologic correlation analysis and final therapeutic action planning increase its accuracy, safety and effectiveness with less timeconsuming.

Conclusions: The NDRS does not only allows to substitute with a personal computer much of the equipment for deep brain recording, but rather its graphical and automatic tools also increase the accuracy, safety and effectiveness of the analyses and reduce the whole surgical time.

Metrics

Metrics Loading ...

References

Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 2003;13(6):696-706.

Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Macias R, Alvarez L, Guridi J, et al. Pathophysiologic basis of surgery for Parkinson’s disease. Neurology 2000;55(12 Suppl 6):S7-12.

Silberstein P, Kühn AA, Kupsch A, Trottenberg T, Krauss JK, Wöhrle JC, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003;126(Pt 12):2597-608.

Yeo TT, Nowinski WL. Functional neurosurgery aided by use of an electronic brain atlas. Acta Neurochir Suppl. 1997;68:93-9.

Novak P, Daniluk S, Ellias SA, Nazzaro JM. Detection of the subthalamic nucleus in microelectrographic recordings in Parkinson disease using the high-frequency (> 500 hz) neuronal background. Technical note. J Neurosurg 2007;106(1):175-9.

Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL. Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 2002;17 Suppl 3:S145-9.

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55(3):181-4.

Pesenti A, Rohr M, Egidi M, Rampini P, Tamma F, Locatelli M, et al. The subthalamic nucleus in Parkinson’s disease: power spectral density analysis of neural intraoperative signals. Neurol Sci 2004;24(6):367-74.

Schaltenbrand G, Wahren W. Atlas for stereotaxy of the human brain. 2nd ed. Stuttgart, New York: Georg Thieme Verlag; 1977.

Starr PA. Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach. Stereotact Funct Neurosurg 2002;79(3-4):118-45.

Macías R, Teijeiro J, Torres A, Alvarez L. Electrophysiological targeting in stereotaxic surgery for Parkinson’s disease. In: Obeso JA, DeLong MR, Marsden CD, editors. Advances in neurology, Vol 74, The basal ganglia and new surgical approaches for Parkinson’s disease. Philadelphia: Lippincott- Raven; 1997. p. 175-82.

Priori A, Egidi M, Pesenti A, Rohr M, Rampini P, Locatelli M, et al. Do intraoperative microrecordings improve subthalamic nucleus targeting in stereotactic neurosurgery for Parkinson’s disease? J Neurosurg Sci 2003;47(1):56-60.

Ohye Ch. Selective thalamotomy for movement disorders: Microrecord- ing stimulation techniques and results. In: Lunsford LD, editor. Modern stereotactic neurosurgery. Boston: Nijhoff; 1988. p. 315-31.

Garonzik IM, Hua SE, Ohara S, Lenz FA. Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate. Mov Disord 2002;17 Suppl 3:S135-44.

Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 2004;86(3):1829-42.

Brown P, Williams D. Basal ganglia local field potential activity: char- acter and functional significance in the human. Clin Neurophysiol 2005;116(11):2510-9.

Kester W. Mixed-signal design seminar. Analog Devises. London; 1991.

Sheingold DH. Analog-digital conversion handbook. Analog Devices. London; 1986.

Dmítriev VI. Teoría de información aplicada. Moscú: Mir; 1991.

Foley JD, Van Dam A. Fundamentals of interactive computer graphics. Boston, MA: Addison-Wesley; 1984.

Teijeiro J, Ohye Ch, Macías RJ, Ortega I, Alaminos A, Alvarez L. Deep record- ing and digital processing system for brain electrical activity evaluation. Stereotact Funct Neurosurg 1994;62(1-4):198.

Teijeiro J, Macías RJ, Ohye C, Muñoz JL, Alvarez LM, Ochoa L, et al: Sistema automatizado de registro de la actividad eléctrica de estructuras profundas del sistema nervioso central. Neurocirugía 1996;7:171-80.

Teijeiro J, Macías RJ, Morales JM, Guerra E, López G, Alvarez LM, et al. Personal-computer-based system for three-dimensional anatomic- physiological correlations during stereotactic and functional neurosurgery. Stereotact Funct Neurosurg 2000;75(4):176-87.

Teijeiro-Amador J, Macías-González R, Morales JM, Guerra-Figueredo E, López G, Álvarez-González L, et al. Sistema automático para la correlación anatomofisiológica en tres planos simultáneos durante la neurocirugía funcional. Rev Neurol 2001;32(11):1005-12.

Fernández F, Seijo F, Teijeiro J, Monitorización estereotáxica de los ganglios de la base: consideraciones metodológicas. Rev Neurol 1997;25(140):615-35.

Matous k M. Frequency and correlation analysis. Part A. In: Rémond A, editor. Handbook of Electroencephalography and Clinical Neurophysiology Vol. 5, Amsterdam: Elsevier; 1973. p. 79-99.

Bracewell RN. The Fourier transform and its applications. New York: McGraw-Hill Book; 1978.

Jenkins GM, Watts DG, Spectral analysis and its applications. San Francisco: Holden-Day; 1968.

Ohye Ch. Stereotactic surgery in movement disorders. Neurosurgery 1987;2(1):193-208.

Molina H, Quiñones-Molina R, Alvarez L, Macías R, Alaminos A, Muñoz J, et al. Stereotactic retransplantation in Parkinson’s disease: clinical, imaging and electrophysiological evidence of adrenal brain graft viability. Stereotact Funct Neurosurg 1994;62(1-4):148-51.

Quiñones-Molina R, Molina H, Ohye C, Macias R, Alaminos A, Alvarez L, et al. CT-oriented microrecording guided selective thalamotomy. Stereotact Funct Neurosurg. 1994;62(14):200-3.

López-Flores G, Miguel-Morales J, Teijeiro-Amador J, Vitek J, Perez-Parra S, Fernández-Melo R, et al. Anatomic and Neurophysiological Methods for the Targeting and Lesioning of the Subthalamic Nucleus: Cuban Experience and Review. Neurosurgery 2003;52(4):817-31.

Alvarez L, Macias R, Guridi J, Lopez G, Alvarez E, Maragoto C, et al. Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 2001;16(1):72-8.

Fernández-González F, Seijo F, Menéndez-Guisasola L, Salvador C, Roger RL, González-García FJ, et al. Identificación de las dianas estereotáxicas en la cirugía de la enfermedad de Parkinson. Rev Neurol 1999;28(6):600-8.

Fernández-González F, Seijo-Fernández F, Salvador-Aguiar C, Menéndez- Guisasola L, Lozano-Aragoneses B, Valle C, et al. Neurofisiología aplicada en el tratamiento con estimulación cerebral profunda del temblor severo de la esclerosis múltiple. Rev Neurol 2001;32(6):559-67.

Torres JM, Seijo F, Seijo E, et al. Estimulación cerebral profunda. Una sola diana para control de dolor y temblor. En: Libro de ponencias: XI Reunión de la Sociedad Española de Neurocirugía. Vigo; 2006. p. 75.

Infante-Rielo A. Introducción a la teoría de la información. Santiago de Cuba: Oriente; 1983.

Medical Instrumentation Committee. Guidelines for recording clinical EEG on digital media. Bloomfield: American Electroencephalographic Society; 1991.

Aubert E, Antelo JM. Sigmagraphics: Módulo de aplicaciones gráficas en microcomputadoras. CENIC, Ciencias Biológicas 1988;19(3):168-70.

Antelo JM, Díaz-Comas L, Aubert E, et al. Automatización de los servicios de encefalografía clínica. Compilaciones: Computación y Electrónica 1990;19(3):154-6.

Brown P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol 2007;17(6):656-64.

Published

2010-05-01

How to Cite

1.
Teijeiro Amador J, Macías RJ, Alvarez LM, Maragoto C, García I. Computerized Deep Brain Recording System (NDRS) for stereotactic and functional neurosurgery. NeuroTarget [Internet]. 2010 May 1 [cited 2025 Feb. 23];5(1):44-63. Available from: https://neurotarget.com/index.php/nt/article/view/306

Issue

Section

Original