Cerebral microdialysis, a promising tool for neurochemical study in neurosurgery: A technical description

Authors

  • Sergio A. Sacchettoni Neurosurgery Service, José María Vargas Hospital. Caracas. Venezuela.
  • Pedro Rada Behavioral Physiology Laboratory, Faculty of Medicine, University of Los Andes, Mérida, Venezuela
  • Luis Teneud Behavioral Physiology Laboratory, Faculty of Medicine, University of Los Andes, Mérida, Venezuela
  • Ramón Galué Neurology Service, Vicente Salias Military Hospital, Fuerte Tiuna, Caracas
  • Juan Poincaré Abud Antigen Study Laboratory, Institute of Biomedicine, Ministry of Health, Venezuela
  • Juan Félix Del Corral Neurosurgery Service, José María Vargas Hospital. Caracas. Venezuela.

DOI:

https://doi.org/10.47924/neurotarget2010305

Keywords:

surgery of Parkinson’s disease; , cerebral microdialysis, deep brain stimulation (DBS), subthalamic nucleus, globus pallidum intarnae, thalamus

Abstract

Introduction: In Venezuela, since 1997 we are using the technique of cerebral microdialysis (CMD) during stereotactic surgery for Parkinson’s disease (PD) and obsessive compulsive disorder (OCD) to study the neurochemistry of neuronal circuits involved in the pathophysiology of these diseases, by monitoring the concentrations of excitatory and inhibitory neurotransmitters and their variations in response to the application of high frequency electrical impulses and to radiofrequency ablation or DBS procedures.

Materials and methods: In order to study PD, we used the multiple and dynamic CMD technique during thalamotomy, pallidotomy and implantation of DBS electrodes in the subthalamic nucleus (STN). Samples were collected using CMD probes placed in the globus pallidum internae (GPi) and / or ventrolateral nucleus (VL) of the thalamus at various times: before, during and after application of high frequency electrical impulses (inhibitory, 100-120 Hz and 2-4 V) in the surgical “target” (STN, GPi, or VL), and finally, after radiofrequency ablation (thalamotomy or pallidotomy) or after placement of the electrodes of neuromodulation. The CMD is performed with the patient awake, without sedation. For the study of OCD, we took samples from the dorsomedian thalamus, on the right side or bilaterally, before, during and after ablation (cingulotomy) on each side.

Results: In patients with PD, the concentration of extracellular GABA in the VL decreased during the application of high frequency electrical impulses in the GPi and returned to its initial value after the electrical inhibition was suspended, and decreased permanently after destruction of the GPi (pallidotomy) or reversibly with the DBS of the GPi. The level of glutamate (Glu) decreased when the electrical impulses were applied on the STN (“indirect pathway” of the basal ganglia). In addition, when we applied electrical impulses in the STN, there was an increase in the concentration of GABA in the GPi, which should normally be released by the axons from the putamen (“direct path”). In patients with OCD, the level of GABA in the dorsomedian nucleus (DM) of the right thalamus decreased discreetly after left cingulotomy (contralateral) and more pronouncedly with right cingulotomy (ipsilateral).

Discussion and conclusions: We observed decreased GABA levels in the VL and Glu in the GPi during application of electrical impulses in the GPi or the STN, respectively, which is expected according to the pathophysiological model of the basal ganglia currently accepted. However, raising the level of GABA in the GPi during the application of electrical impulses in the NST suggests an interaction between direct and indirect pathways, which was unknown until now. And the psychosurgery findings seem to confirm that OCD has its pathophysiological substrate in the basal ganglia, hence, we could propose that OCD has a mechanism similar to the PD. These results, although no statistically significant, encourage us to continue this research.

Metrics

Metrics Loading ...

References

Hernandez L, Paez X, Hamlin C. Neurotransmitters extraction by local intracerebral dialysis in anesthetizedrats. Pharmacol Biochem Behav 1983;18(2):159-62.

Hernandez L, Lee F, Hoebel BG. Simultaneous microdialysis and amphetamine infusion in the nucleus accumbens and striatum of freely moving rats: increase in extracellular dopamine and serotonin. Brain Res Bull 1987;19(6):623-8.

Paredes D, Rada P, Bonilla E, Gonzalez LE, Parada M, Hernandez L. Melatonin acts on the nucleus accumbens to increase acetylcholine release and modify the motor activity pattern of rats. Brain Res 1999;850(1-2-):14-20.

Pérez J, Colasante C, Tucci S, Hernández L, Rada P. Effects of feeding on extracellular levels of glutamate in the medial and lateral portion of the globus pallidus of freely moving rats. Brain Res 2000;877(1):91-4.

Rada PV, Hoebel BG. Supraadditive effect of d-fenfluramine plus phentermine on extracellular acetylcholine in the nucleus accumbens: possible mechanism for inhibition of excessive feeding and drug abuse. Pharmacol Biochem Behav 2000;65(3):369-73.

Rada PV, Hoebel BG. Aversive hypothalamic stimulation releases acetylcholine in the nucleus accumbens, and stimulation-escape decreases it. Brain Res 2001;888(1):60-65.

Rada P, Jensen K, Hoebel BG. Effects of nicotine and mecamylamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacology (Berl) 2001;157(1):105-10.

Avena NM, Rada P, Moise N, Hoebel BG. Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 2006;139(3):813-20.

Rada P, Tucci S, Teneud L, Paez X, Perez J, Alba G, et al. Monitoring gammaaminobutyric acid in human brain and plasma microdialysates using micellar electrokinetic chromatography and laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 1999;735(1):1-10.

Sacchettoni SA, Teneud L, Rada P, Hernández L, Villamediana J, Del Corral JF, et al. Microdiálisis en cerebro humano: mediciones extracelulares en tálamo de pacientes con enfermedad de Parkinson. X Congreso Nacional de Neurocirugía. Caracas, Venezuela; 19-22 de mayo 1999.

Del Corral JF, Hernández L, Sacchettoni S, García I, Onay D, Teneud L, et al. Microdiálisis cerebral en humanos: experiencia en la enfermedad de Parkinson / Brain microdialysis in human: experienci in the Parkinson disease. Arch Hosp Vargas 2000;42(2):93-6.

Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther 1972;198(1):9-21.

Delgado JM, Lerma J, Martín del Río R, Solís JM. Dialytrode technology and local profiles of amino acids in the awake cat brain. J Neurochem 1984;42(5):1218-28.

Ungerstedt U, Hallström A. In vivo microdialysis a new approach to the analysis of neurotransmitters in the brain. Life Sci 1987;41(7):861-4.

Müller M. Science, medicine, and the future: Microdialysis. BMJ 2002;324(7337):588-91.

During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 1993;341(8861):1607-10.

Páez X, Rada P, Tucci S, Rodríguez N, Hernández L. Capillary electrophoresis laser-induced fluorescence detection of amphetamine in the brain. J Chromatogr A 1996;735(1-2):263-9.

Sacchettoni SA, Del Corral JF, Teneud L, Rojas R, Rada P, Guerrero F, et al. Múltiples blancos cerebrales para la neurocirugía de trastornos obsesivo-compulsivos. Neurotarget 2006;1(1):45-8.

Hjerten S. Zone-sharpening in paper electrophoresis a method allowing application of dilute protein solutions. Biochim Biophys Acta 1959;32:531-4.

Hjerten S. Calcium phosphate chromatography of normal human serum and of electrophoretically isolated serum proteins. Biochim Biophys Acta 1959;31(1):216-35.

Jorgenson MW, Goodkind RJ. Spectrophotometric study of five porcelain shades relative to the dimensions of color, porcelain thickness, and re- peated firings. J Prosthet Dent 1979;42(1):96-105.

Jorgenson JW, Lukacs KD. Free-zone electrophoresis in glass capillaries. Clin Chem 1981;27(9):1551-3.

Jorgenson JW, Lukacs KD. Capillary zone electrophoresis. Science 1983;222(4621):266-72.

Hernandez L, Rossell S, Tucci S, Paredes D, Rada P. Improvement of the temporal resolution of brain microdialysis: sampling in seconds. In: Westerink BHC, editor. Handbook of Microdialysis. New York: Elsevier; 2010. In press.

Hernandez L, Stanley BG, Hoebel BG. A small, removable microdialysis probe. Life Sci 1986;39(26):2629-37.

Tucci S, Rada P, Sepúlveda MJ, Hernández L. Glutamate measured by 6-s resolution brain microdialysis: capillary electrophoretic and laser-induced fluorescence detection application. J Chromatogr B Biomed Sci Appl 1997;694(2):343-9.

cGuzman NA, Park SS, Schaufelberger D, Hernandez L, Paez X, Rada P, et al. New approaches in clinical chemistry: on-line analyte concentration and microreaction capillary electrophoresis for the determination of drugs, metabolic intermediates, and biopolymers in biological fluids. J Chromatogr B Biomed Sci Appl 1997;697(1-2):37-66.

Rada P, Tucci S, Pérez J, Teneud L, Chuecos S, Hernández L. In vivo moni- toring of gabapentin in rats: a microdialysis study coupled to capillary electrophoresis and laser-induced fluorescence detection. Electrophoresis 1998;19(16-17):297680.

Tucci S, Pinto C, Goyo J, Rada P, Hernández L. Measurement of glutamine and glutamate by capillary electrophoresis and laser induced fluorescence detection in cerebrospinal fluid of meningitis sick children. Clin Biochem 1998;31(3):143-50.

Alexander GE, DeLong MR, Strick PL. Parallel organizations of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357-81.

Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits; neural substrates of parallel processing. Trends Neurosci 1990;13:266-71.

DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13(7):281-5.

Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12(10):366-75.

Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990;249(4975):1436-8.

Kashiwagi S, Fujisawa H, Yamashita T, Ito H, Maekawa T, Kuroda Y, Tateishi A. Excitotoxic amino acid neurotransmitters are increased in human cerebrospinal fluid after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1994;57(11):1442-3.

Kanthan R, Shuaib A. Clinical evaluation of extracellular amino acids in severe head trauma by intracerebral in vivo microdialysis. J Neurol Neurosurg Psychiatry 1995;59(3):326-7.

Whittle IR, Piper IR. Clinical evaluation of extracellular amino acids in severe head trauma by intracerebral in vivo microdialysis. J Neurol Neurosurg Psychiatry 1996;60(6):703.

Camputaro LA, Fernández RG. Microdiálisis cerebral en el trauma encéfalocraneano. Una ventana al metabolismo neuronal post-injuria. Rev Ecuat Med Crit 2001;1(2):57-9. Versión electrónica en Internet [acceso 28 de junio del 2010] disponible en: http://www.medicosecuador.com/espanol/ articulos_medicos/54.htm

Sarrafzadeh AS, Haux D, Lüdemann L, Amthauer H, Plotkin M, Küchler I, Unterberg AW. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke 2004;35(3):638-43.

Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005;25(6):763-74.

Mertens P, Ghaemmaghami C, Bert L, Perret-Liaudet A, Sindou M, Renaud B. Amino acids in spinal dorsal horn of patients during surgery for neuropathic pain or spasticity. Neuroreport 2000;11(8):1795-8.

Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci 1990;46(4):301-8.

Fedele E, Mazzone P, Stefani A, Bassi A, Ansaldo MA, Raiteri M, et al. Microdialysis in Parkinsonian patient basal ganglia: acute apomorphine-induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids. Exp Neurol 2001;167(2):356-65.

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 1995;20(1):91-127.

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 1995;20(1):128-54.

Patsalos PN, Abed WT, Alavijeh MS, O’Connell MT. The use of microdialysis for the study of drug kinetics: some methodological considerations illustrated with antipyrine in rat frontal cortex. Br J Pharmacol 1995;115(3):503-9.

Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Parkinsonism Relat Disord 1998;4(2):53-7.

Birkmayer W, Hornykiewicz O. The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord 1998;4(2):59-60.

Feeney DM, Wier CS. Sensory neglect after lesions of substantia nigra or lateral hypothalamus: differential severity and recovery of function. Brain Res 1979;178(2-3):329-46.

Selby G. The addition of bromocriptine to long-term dopa therapy in Parkinson’s disease. Clin Exp Neurol 1989;26:129-39.

Published

2010-05-01

How to Cite

1.
Sacchettoni SA, Rada P, Teneud L, Galué R, Poincaré Abud J, Del Corral JF. Cerebral microdialysis, a promising tool for neurochemical study in neurosurgery: A technical description. NeuroTarget [Internet]. 2010 May 1 [cited 2025 Aug. 5];5(1):30-43. Available from: https://neurotarget.com/index.php/nt/article/view/305

Issue

Section

Original