Epilepsies of eloquent areas: contributions of modern neuroimaging.

Authors

  • Hugo B. Pomata Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Fernando Contreras Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Gabriela De Pino Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Yamila Slame Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Paulina Yáñez Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Federico Sánchez González Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Gabriela Ugarnes Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.
  • Juan Pociecha Hospital de Pediatría J. P. Garrahan. FLENI. Buenos Aires. Argentina.

DOI:

https://doi.org/10.47924/neurotarget2017163

Keywords:

Image fusion, Tractography, Intraoperative neurophysiology, Neuronavigation, Intracranial electrodes

Abstract

The first surgeries of the epilepsies that arise from the eloquent areas, particular in the central area, date back to the XIX century and were performed by the neurosurgeons Macewen and Horsley. Technological advances, especially those related to neurophysiology and, more recently, to neuroimaging, have provided tools that have improved our knowledge of the structural limits as well as the cortical functions and clear anatomical landmarks of the region and have thereby facilitated surgical approaches that are safer for the integrity of the brain of the patient and avoid as much as possible severe or even mild sequelae.

Metrics

Metrics Loading ...

References

Olivier A, Boling WW, Tanriverdi T (Ed). Surgery of central area epilepsy. Techniques in Epilepsy Surgery. The MNI approach. Cambridge University Press, 2012: 132-145.

Houinard P, Paus T. The primary motor and premotor areas of the human cerebral cortex. The Neuscientist 2006; 12(2): 143-152.

Barba C, Frot M, Valeriani M, Tonali P, Mauguiere F. Distinct frontocentral N60 and supra-sylvian N70 middle-latency components of the median nerve SEPs as assessed by scalp topographic analysis, dipolar modeling and depth recordings. Clin Neurophysiol 2002; 113(7): 981-992.

Pouratian N, Bookheimer. The reliability of neuroanatomy as a predictor of eloquence: a review. Neurosurg Focus 2010; 28 (2): E3.

Idris, Z, Kandasamy R, Reza F, Abdullah JM. Neural oscillation, network, eloquent cortex and epileptogenic zone revealed by magnetoencephalography and awake craniectomy. Asian J Neurosurg 2014; 9(3): 144.152.

Pondal-Sordo M, Diosy D, Téllez-Zenteno JF, Girvin JP, Wiebe S. Epilepsy surgery involving the sensory-motor cortex. Brain 2006; 129: 3307-3314.

Delev D, Send K, Wagner J, von Lehe M, Ormond DR, Schramm J, Grote A. Epilepsy surgery of the rolandic and immediate perirolandic cortex: surgical outcome and prognostic factors. Epilepsia 2014; **(*): 1-9.

Devoux B, Chassoux F, Landré E, Turak B, Abou.Salma Z, Mann M, Pallud J, Baudouin-Chial S. Varlet P, Rodrigo S, Nataf F, Roux FX. Surgical resections in functional areas: report of 89 cases. Neurochirugie, 2008; 54(3): 409-417.

Devinsky O, Romanelli P, Orbach D, Pacia S, Doyle W. Surgical treatment of multifocal epilepsy involving eloquent cortex. Epilepsia 2003; 44(5): 718-723.

Boling W, Parsons M, Kraszpulski M, Cantrell C, Puce A. Whole-hand sensorimotor area: cortical stimulation localization and correlation with functional magnetic resonance imaging. J Neurosurg. 2008; 108(3): 491-500.

Yoursy TA, Schmid UD, Alkadhi H, Schmidt A, Peraud A, Buettner A, Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 1997; 120: 141-157.

Young-Hoon K, Chi HK, June SK, Sang KL, Chun KC. Resection frequency map after awake respective surgery for non-lesioanl neocortical epilepsy involving eloquent areas. Acta Neurochir 2011; 153: 1739-1749.

Sandok EK, Cascino GD. Surgical treatment for perirolandic lesional epilepsy. Epilepsia 1998; 39(Suppl 4): S42-48.

Behdad A, Limbrick DD Jr, Bertrand ME, Smyth MD. Epilepsy surgery in children with seizures arisisng from the rolandic cortex. Epilepsia 2009; 50(6): 1450-1461.

Jeong JW, Asano E, Juhász C, Chugani HT. Localization of specific language pathways using tractography for presusrgical planning of children with intractable epilepsy. Epilepsia 2015; 56(1):49-57.

Holodny A. Clinical Applications of MRI and DTI. ISMRM 2006-2007.

González-Darder JM1, González-López P, Talamantes F, Quilis V, Cortés V, García-March G, Roldán P. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography, Neurosurg. Focus, 2010; 28(2): E5.

Rodionov R1, Vollmar C, Nowell M, Miserocchi A, Wehner T, Micallef C, Zombori G, Ourselin S, Diehl B, McEvoy AW, Duncan JS. Feasibility of multimodal 3D neuroimaging to guide implantation of intracranial EEG electrodes, Epilepsy Research. 2013;107: 91-100.

Momjian S, Vulliémoz S, Spinelli L, Pollo C, Utilization of Preoperative Imaging for Epilepsy Surgery. Epileptologie, 2007; 24: 73-77.

Petrella JR1, Shah LM, Harris KM, Friedman AH, George TM, Sampson JH, Pekala JS, Voyvodic JT. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable. Brain tumors. Radiology, 2006; 240(3): 793-802.

Liu H, Buckner RL, Talukdar T, Tanaka N, Madsen JR, Stufflebeam SM. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg 2009; 111(4): 746-754.

Mattew C, Garret MD, Pouratian N, Liau LM. Use of language mapping to aid in resection of gliomas in eloquent brain regions. Neurosurg Clin N Am. 2012; 23(3): 497-506.

Cukiert A, Buratini JA, Machado E, Sousa A, Vieira J, Forstaer C, Argentoni M, Baidauf C, Frayman L. Seizure’s outcome after cortical resections including the face and tongue rolandic areas in patients with refractory epilepsy and normal MRI submitted to subdural grids’ implantation. Arq Neuropsichiatr 2001; 59(e-B): 717-721.

Korostenskaja M, Po-Ching Ch, Salinas CM, Westerveld M, Brunner P, Gerwin S, Cook JC, Baumgartner J, Lee KH. Real-time functional mapping: potential tool for improving language outcome in pediatric epilepsy surgery. J Neurosurg Pediatr. 2014; 14(3): 287-295.

Sala F, Matevz JK, Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 2002;18: 264-287.

Sala F, Intraoperative neurophysiology is here to stay. Childs Nerv Syst 2010; 26: 413-417.

Weinzierl MR, Reinacher P, Gilsbach JM, Rodhe V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev 2007; 30: 109-116.

Farrell DF, Burbank N, Lettich E, Ojermann GA. Individual variation in human motor-sensory (rolandic) cortex. J Clin Neurophysiol 2007; 24(3): 286-293.

Branco DM, Coelho TM, Branco BM, Achmidt L, Calcagnotto ME, Partuguez M, Neto EP, Paglioli E, Palmini A, Lima JV, Da Costa JC. Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilpesy surgery. J Clin Neurophysiol 2003; 20(1): 17-25.

Lee U1, Bastos AC, Alonso-Vanegas MA, Morris R, Olivier A. Topographic analysis of the gyral patterns of the central area. Stereotact Funct Neurosurg. 1998; 70(1): 38-51.

Zha F, Zhou J, Li T, Cui Z, Luan G. Outcome of bipolar electrocoagulation with lesionectomy in the treatment of epilepsy involving eloquent areas. Stereotact Funct Neurosurg 2015; 93(1): 1-9.

Gallentine WB, Mikati MA. Intraoperative electrocorticography and cortical stimulation in children. J Clin Neurophysiol. 2009; 26(2): 95-108.

Zotta D, Di Rienzo A, Scogna A, Ricci A, Ricci G, Galzio RJ. Supratentorial cavernomas in eloquent areas: application of neuronavigation and functional MRI in operative planning. J Neurosurg Sci 49(1): 2005; 13-19.

Kibride RD. Intraoperative functional cortical mapping of language. J Clin Neurophysiol 2013; 30(6): 591-596.

Chitoku S, Otsubo H, Harada Y, Rutka JT, Weiss SK, AbdolL M, Snead OC 3rd. Extraoperative cortical stimulation of motor function in children. Pediatr Neurol 2001; 24(5): 344-350. Goujun Z, Duanyu N, Fu P, Lixin C, Tao Y, Liang Q, Zhiwei R. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas. J Clin Neurosci 2014; 21(2): 263-267.

Shah AK, Mittal S. Invasive electroencephalography monitoring: indications and presurgical planning. Ann Indian Acad Neurol 2014; 17(5): 89-94.

Benifla M, Sala F Jr, Jane J, Ostubo H, Ochi A, Drake J, Weiss S, Donner E, Fujimoto A, Holowka S, Widjaja E, Snead OC3rd, Smith ML, Tamber MS, Rutka JT: Neurosurgical management of intractable rolandic epilepsy in children: role of resection in eloquent cortex. Clinical article. J Neurosurg Pediatr 2009, 4(3): 199-216.

Shiban E, Krieg SM, Obermuller T, Wostrack M, Meyer B, Ringel F. Continuous motor-evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg 2015;123: 301-306.

Stefanello S, Marín-León L, Fernandes PT, Li LM, Botega NJ. Psychiatric comorbidity nad suicidal behavior in epilepsy: A community-based case-control study. Epilepsia 2010; 51(7): 1120-1125.

Kanner AM, Barry JJ, Gilliam F, Hermann B, Meador KJ. Anxiety disorders, subsyndromic depressive episodes, and major depressive episodes: Do they differ on their impact on the quality of life of patients with epilepsy?. Epilepsia 2010; 51(7): 1152-1158.

Published

2017-04-01

How to Cite

1.
Pomata HB, Contreras F, De Pino G, Slame Y, Yáñez P, Sánchez González F, et al. Epilepsies of eloquent areas: contributions of modern neuroimaging. NeuroTarget [Internet]. 2017 Apr. 1 [cited 2024 Nov. 21];11(1):13-24. Available from: https://neurotarget.com/index.php/nt/article/view/163