Estimulación medular eléctrica en ráfagas y tónica: mecanismos cerebrales comunes y diferentes.
Publicado originalmente en la revista Neuromodulation 2016; 19:47-59. Traducción: María Eugenia Górriz y María Carla Scolamieri
DOI:
https://doi.org/10.47924/neurotarget2017157Palabras clave:
Cingular, Cingular pregenual, en ráfagas, estimulación, médula espinal, parahipocámpico, posterior, tónicaResumen
Objetivo: La estimulación medular eléctrica se usa generalmente para tratar el dolor médicamente incoercible. Para lograr la supresión del dolor se utilizan distintos diseños de estimulación como la estimulación tónica, la estimulación de alta frecuencia y la estimulación en ráfagas. Un análisis preliminar de los mismos datos utilizados en este estudio demostró que la estimulación en ráfagas probablemente modula las vías mediales de dolor, a diferencia de la estimulación tónica. El tema plantea qué mecanismos supraespinales comunes y diferentes usan la estimulación tónica y en ráfagas.
Materiales y métodos: Se analizaron los datos clínicos y de electroencefalografía (EEG) de cinco pacientes sometidos a estimulación tónica, en ráfagas y simulada para observar las similitudes y las diferencias entre la estimulación en ráfagas y tónica. Se realiza un análisis de sustracción y conjunción de EEG de fuente localizada (sLORETA) en cada condición tanto para actividad como para conectividad funcional. Se calcula una relación entre la corteza cingular anterior dorsal (CCAd) y la corteza cingular anterior pregenual/corteza prefrontal ventromedial (CCAp/CPFvm) para reflejar un equilibrio entre sistemas de tolerancia del dolor y supresión del dolor.
Resultados: Se observan diferencias en la CCAd, la corteza prefrontal dorsolateral, la corteza somatosensorial primaria y la corteza cingular posterior (CCP). La estimulación en ráfagas y tónica comparten la activación en la CCAp, el área parietal inferior, que abarca la corteza somatosensorial secundaria inferior, la CCP y el parahipocampo. La estimulación en ráfagas normaliza el equilibrio tolerancia del dolor/ supresión del dolor en contraposición a la estimulación tónica.
Discusión y conclusión: Estos datos sugieren que tanto la estimulación en ráfagas como la estimulación tónica modulan el sistema descendente inhibidor del dolor (a través de la CCAp), así como también un sistema de memoria aversiva (a través del parahipocampo) contextual autorreferencial (a través de la CCP). No obstante, la estimulación en ráfagas normaliza el equilibrio tolerancia/supresión del dolor en contraposición al modo tónico por un efecto mayor sobre la CCAd.
Métricas
Citas
Bonica JJ. The need of a taxonomy. Pain 1979;6:247–248.
Kandel E. Pain. Functional and Stereotactic Neurosurgery. Nueva York: Plenum Medical Book Company, 1989:331–441.
Treede RD, Jensen TS, Campbell JN et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008;70:1630–1635.
Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000;288:1769–1772.
Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013;14:502–511.
Fields H. State-dependent opioid control of pain. Nat Rev Neurosci 2004;5:565–575.
Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997;277:968–971.
Frot M, Mauguiere F, Magnin M, Garcia-Larrea L. Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 2008;28:944–952.
Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 2002;3:655–666.
Craig AD. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 2004;477:119–148.
Kong J, Loggia ML, Zyloney C, Tu P, Laviolette P, Gollub RL. Exploring the brain in pain: activations, deactivations and their relation. Pain 2010;148:257–267.
Squire L. Somatosensory system. In: Squire L, Berg D, Bloom F, du Lac S, Ghosh A, Spitzer N, eds. Fundamental Neuroscience, 3ª ed. Ámsterdam: Academia Press, 2008:599.
Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci 2015;38:86–95.
Carlino E, Frisaldi E, Benedetti F. Pain and the context. Nat Rev Rheumatol 2014;10:348–355.
Wiech K, Jbabdi S, Lin CS, Andersson J, Tracey I. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain 2014;155:2047–2055.
Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 2007;37:579–588.
Leknes S, Berna C, Lee MC, Snyder GD, Biele G, Tracey I. The importance of context: when relative relief renders pain pleasant. Pain 2013;154:402–410.
Taylor RS. Spinal cord stimulation in complex regional pain syndrome and refractory neuropathic back and leg pain/ failed back surgery syndrome: results of a systematic review and meta- analysis. J Pain Symptom Manage 2006;31 (4 Supl.):S13–S19.
Mailis-Gagnon A, Furlan AD, Sandoval JA, Taylor R. Spinal cord stimulation for chronic pain. Cochrane Database Syst Rev (Revisiones de Sistemas de la Base de Datos Cochrane) 2004;(3):CD003783.
Taylor RS, De Vries J, Buchser E, Dejongste MJ. Spinal cord stimulation in the treatment of refractory angina: systematicreview and meta-analysis of randomised controlled trials. BMC Cardiovasc Disord 2009;9:13.
Ubbink DT, Vermeulen H. Spinal cord stimulation for non- reconstructable chronic critical leg ischaemia. Cochrane Database Syst Rev (Revisiones de Sistemas de la Base de Datos Cochrane) 2013;(2):CD004001.
De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013;80:642–649.
De Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 2010;66:986–990.
Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med 2014;15:347– 354.
Schu S, Slotty PJ, Bara G, von Knop M, Edgar D, Vesper JA. Prospective, randomised, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome. Neuromodulation 2014;17:443–450.
Cohen RA, Kaplan RF, Moser DJ, Jenkins MA, Wilkinson H. Impairments of attention after cingulotomy. Neurology 1999;53:819–824.
Kulkarni B, Bentley DE, Elliott R et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci 2005;21:3133– 3142.
Saade NE, Jabbur SJ. Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008;86:22–47.
Barchini J, Tchachaghian S, Shamaa F et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 2012;215:196–208.
Song Z, Ultenius C, Meyerson BA, Linderoth B. Pain relief by spinal cord stimulation involves serotonergic mechanisms: an experimental study in a rat model of mononeuropathy. Pain 2009;147:241–248.
Tang R, Martinez M, Goodman-Keiser M, Farber JP, Qin C, Foreman RD. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014;17:143–151.
Arnaiz E, Almkvist O, Ivnik RJ et al. Mild cognitive impairment: a cross-national comparison. J Neurol Neurosurg Psychiatry 2004;75:1275–1280.
Crosby ND, Goodman Keiser MD, Smith JR, Zeeman ME, Winkelstein BA. Stimulation parameters define the effectiveness of burst spinal cord stimulation in a rat model of neuropathic pain. Neuromodulation 2015;18:1–8.
Crosby N, Weisshaar C, Smith J, Zeeman M, Goodman-Keiser M, Winkelstein B. Burst & tonic spinal cord stimulation differentially activate gabaergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015;62:1604– 1613.
Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002;24 (Supl. D):5–12.
Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002;15:1–25.
Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 1997;5 (4 Pt 1):261– 270.
Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ. Multisubject fMRI studies and conjunction analyses. Neuroimage 1999;10:385–396.
Friston KJ, Penny WD, Glaser DE. Conjunction revisited. Neuroimage 2005;25:661–667.
Nichols T, Brett M, Andersson J, Wager T, Poline JB. Valid conjunction inference with the minimum statistic. Neuroimage 2005;25:653–660.
Congedo M, John RE, De Ridder D, Prichep L, Isenhart R. On the “dependence” of “independent” group EEG sources; an EEG study on two large databases. Brain Topogr 2010;23:134–138.
Pascual-Marqui RD, Lehmann D, Koukkou M et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci 2011;369:3768– 3784.
Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926–1929.
Buzsaki G, Mizuseki K. The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 2014;15:264–278.
Knyazev GG. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2012;36:677–695.
Buzsaki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 2005;15:827–840.
Palva S, Palva JM. New vistas for alpha-frequency band oscillations. Trends Neurosci 2007;30:150–158.
Engel AK, Fries P. Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol 2010;20:156–165.
Arnal LH, Giraud AL. Cortical oscillations and sensory predictions. Trends Cogn Sci 2012;16:390–398.
De Ridder D, Vanneste S, Plazier M, Vancamp T. Mimicking the brain: evaluation of St Jude Medical’s Prodigy Chronic Pain System with Burst Technology. Expert Rev Med Devices 2015;12:143–150.
Sherman SM. A wake-up call from the thalamus. Nat Neurosci2001;4:344–346.
Izhikevich E. Neural excitability, spiking and bursting. Int J Bifurcat Chaos 2000;10:1171–1266.
De Ridder D, Plazier M, Menovsky T, KamerlingN,Vanneste S. C2 subcutaneous stimulation for failed back surgery syndrome: a case report. Neuromodulation 2013;16:610–613.
De Ridder D, Vanneste S, Van Laere K, Menovsky T. Chasing map plasticity in neuropathic pain. World Neurosurg 2013;80:e901– e905.
De Ridder D, Vanneste S, van der Loo E, Plazier M, Menovsky T, van de Heyning P. Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg 2010;112:1289–1294.
De Ridder D, Vanneste S, Kovacs S et al. Transcranial magnetic stimulation and extradural electrodes implanted on secondary auditory cortex for tinnitus suppression. J Neurosurg 2011;114:903–911.
De Ridder D, Vanneste S, Plazier M et al. Dorsolateral prefrontal cortex transcranial magnetic stimulation and electrode implant for intractable tinnitus. World Neurosurg 2012;77:778–784.
De Ridder D, Lenders MW, De Vos CC et al. A two center comparative study on tonic versus burst spinal cord stimulation: amount of responders and amount of pain suppression. Clin J Pain 2015;31:433–437.
de Vos CC, Bom MJ, Vanneste S, Lenders MW, de Ridder D. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 2014;17:152–159.
Stancak A, Kozak J, Vrba I et al. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur J Pain 2008;12:137– 148.
Moens M, Sunaert S, Marien P et al. Spinal cord stimulation modulates cerebral function: an fMRI study. Neuroradiology 2012;54:1399–1407.
Polacek H, Kozak J, Vrba I, Vrana J, Stancak A. Effects of spinal cord stimulation on the cortical somatosensory evoked potentialsin failed back surgery syndrome patients. Clin Neurophysiol2007;118:1291–1302.
Kishima H, Saitoh Y, Oshino S et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. Neuroimage 2010;49:2564–2569.
Moens M, Marien P, Brouns R et al. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study. Neuroradiology 2013;55:1039–1047.
Wu G, Ringkamp M, Hartke TV et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 2001;21:RC140.
Wu G, Ringkamp M, Murinson BB et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci 2002;22:7746–7753.
Ali Z, Ringkamp M, Hartke TV et al. Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 1999;81:455–466.
Kim U, McCormick DA. The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci 1998;18:9500–9516.
Eippert F, Bingel U, Schoell ED et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 2009;63:533–543.
Yilmaz P, Diers M, Diener S, Rance M, Wessa M, Flor H. Brain correlates of stress-induced analgesia. Pain 2010;151:522–529.
Jensen KB, Srinivasan P, Spaeth R et al. Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis Rheum 2013;65:3293–3303.
Baliki MN, Petre B, Torbey S et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 2012;15:1117–1119.
Denk F, McMahon SB, Tracey I. Pain vulnerability: a neurobiological perspective. Nat Neurosci 2014;17:192–200.
Mansour AR, Baliki MN, Huang L et al. Brain white matter structural properties predict transition to chronic pain. Pain 2013;154:2160–2168.
De Ridder D, Vanneste S, Menovsky T, Langguth B. Surgical brain modulation for tinnitus: the past, present and future. J Neurosurg Sci 2012;56:323–340.
Loggia ML, Berna C, Kim J et al. Disrupted brain circuitry for pain-related reward/ punishment in fibromyalgia. Arthritis Rheumatol. 2014;66:203–212.
Smallwood RF, Laird AR, Ramage AE et al. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain 2013;14:663–675.
Aminoff E, Gronau N, Bar M. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 2007;17:1493–1503.
Bar M, Aminoff E, Ishai A. Famous faces activate contextual associations in the parahippocampal cortex. Cereb Cortex 2008;18:1233–1238.
Bar M, Aminoff E, Schacter DL. Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J Neurosci 2008;28:8539–8544.
Eichenbaum H, Lipton PA. Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. Hippocampus 2008;18:1314–1324.
Ranganath C, Ritchey M. Two cortical systems for memory- guided behaviour. Nat Rev Neurosci 2012;13:713–726.
Piche M, Arsenault M, Rainville P. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain 2010;149:453–462.
Roy M, Piche M, Chen JI, Peretz I, Rainville P. Cerebral and spinal modulation of pain by emotions. Proc Natl Acad Sci U S A 2009;106:20900–20905.
Vogt BA, Finch DM, Olson CR. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 1992;2:435–443.
Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci 2011;31:3795–3804.
Fukudo S, Kanazawa M, Mizuno T et al. Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. Neuroimage 2009;47:946–951.
De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A 2011;108:8075–8080.
Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 2006;7:873–881.
Kattoor J, Gizewski ER, Kotsis V et al. Fear conditioning in an abdominal pain model: neural responses during associative learning and extinction in healthy subjects. PLoS ONE 2013;8:e51149.
Kamping S, Bomba IC, Kanske P, Diesch E, Flor H. Deficient modulation of pain by a positive emotional context in fibromyalgia patients. Pain 2013;154:1846–1855.
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1–38.
Svoboda E, McKinnon MC, Levine B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 2006;44:2189–2208.
Tomasi D, Volkow ND. Functional connectivity density mapping. Proc Natl Acad Sci U S A 2010;107:9885–9890.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676–682.
Ward AM, Schultz AP, Huijbers W, Van Dijk KR, Hedden T, Sperling RA. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum Brain Mapp 2014;35:1061–1073.
Chae Y, Chang DS, Lee SH et al. Inserting needles into the body: a meta-analysis of brain activity associated with acupuncture needle stimulation.J Pain 2013;14:215–222.
Meerwijk EL, Ford JM, Weiss SJ. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain Imaging Behav 2013;7:1–14.
Amanzio M, Benedetti F, Porro CA, Palermo S, Cauda F. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum Brain Mapp 2013;34:738–752.
Seeley WW, Menon V, Schatzberg AF et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349–2356.
Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus- independent thought. Science 2007;315:393–395.
Baliki MN, Mansour AR, Baria AT, Apkarian AV. Functional reorganization of the default mode network across chronic pain conditions. PLoS ONE 2014;9:e106133.
Friebel U, Eickhoff SB, Lotze M. Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage 2011;58:1070–1080.
Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013;368:1388–1397.
Cauda F, Palermo S, Costa T et al. Gray matter alterations in chronic pain: a network-oriented meta-analytic approach. Neuroimage Clin 2014;4:676–686.
Loggia ML, Kim J, Gollub RL et al. Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 2013;154:24–33.
Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 2008;28:1398–1403.
Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 2011;93:111–124.
Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD. A multisensory investigation of the functional significance of the “pain matrix. Neuroimage 2011;54:2237–2249.
Cabeza R, Ciaramelli E, Olson IR, Moscovitch M. The parietal cortex and episodic memory: an attentional account. Nat Rev Neurosci 2008;9:613–625.
Hutchinson JB, Uncapher MR, Wagner AD. Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learn Mem 2009;16:343–356.
Cabeza R, Mazuz YS, Stokes J et al. Overlapping parietal activity in memory and perception: evidence for the attention to memory model. J Cogn Neurosci 2011;23:3209–3217.
Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 2008;100:129–139.
Palermo S, Benedetti F, Costa T, Amanzio M. Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies. Hum Brain Mapp 2015;36:1648–1661.
McGlone F, Reilly D. The cutaneous sensory system. Neurosci Biobehav Rev 2010;34:148–159.
De Ridder D, Vancamp T, Lenders MW, De Vos CC, Vanneste S. Is preoperative pain duration important in spinal cord stimulation? A comparison between tonic and burst stimulation. Neuromodulation 2015;18:13–17, exposición 17.
Van Havenbergh T, Vancamp T, Van Looy P, Vanneste S, De Ridder D. Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation 2015;18:9–12, exposición 12.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Dirk De Ridder, Sven Vanneste
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Este artículo se distribuye bajo la licencia Creative Commons Attribution 4.0 License. A menos que se indique lo contrario, el material publicado asociado se distribuye bajo la misma licencia.