Sistema espinocerebeloso. Conceptos clásicos e implicancias neurofuncionales.

Autores/as

DOI:

https://doi.org/10.47924/neurotarget2018113

Palabras clave:

Cerebelo, Epilepsia, Espasticidad, Estimulación Eléctrica, Haces espinocerebelosos, Síndrome cerebeloso

Resumen

Los haces espinocerebelosos son un eslabón propioceptivo de alta importancia funcional y del movimiento por su estrecha conexión entre la médula espinal, el cerebelo, los ganglios basales y la corteza cerebral motora. Su sistematización hace que las diferentes partes del soma corporal estén representados en diferentes estructuras, y su función esencial es la retroalimentación propioceptiva subconciente para ajustar el movimiento. Su riqueza funcional y su situación superficial en la superficie del cordón lateral de la médula espinal los hace blancos ideales para proyección terapéutica futura por neuromodulación eléctrica, principalmente en espasticidad, epilepsia y movimientos anormales, máxime cuando por su sistematización somatotópica, podría permitir tallar la estimulación adaptada a las características patológicas cada paciente.

Métricas

Cargando métricas ...

Citas

Delmas A. Voies et Centres Nerveux. Ed Masson.10eme edition 1981, pp. 60-3.

Mann MD. Clarke’s column and the dorsal spinocerebellar tract: a review. Brain Behav Evol. 1973;7:34-83.

Arshavsky YI, Berkinblit MB, Fukson OI, Gelfand IM, Orlovsky GN. Recordings of neurons of the dorsal spinocerebellar tract during evoked locomotion. Brain Res. 1972; 43:272-5.

Aoyama M, Hongo T, Kudo N. An uncrossed ascending tract originating from below Clarke’s column and conveying group I impulses from the hindlimb muscles in the cat. Brain Res. 1973; 62:237-41.

Arshavskii II, Berkinblit MV, Gel’fand IM, Orlovskii GN, Fukson OI. Activity of neurons of the dorsal spinocerebellar tract during locomotion. Biofizika. 1972;17:487-94. (translated in Biophysics 417:508-14)

Delmas A. Voies et Centres Nerveux. Ed Masson. 10eme Edition 1981, pp. 150.

Delmas A. Voies et Centres Nerveux. Ed Masson. 10eme Edition 1981, pp. 149.

Lundberg A, Weight F. Functional organization of connexions to the ventral spinocerebellar tract. Exp Brain Res. 1971.

Mann MD. Axons of dorsal spinocerebellar tract which respond to activity in cutaneous receptors. J Neurophysiol. 1971; 34 (6):1035-50.

Bosco G, Poppele RE. Reference frames for spinal proprioception: kinematics based or kinetics based? J Neurophysiol. 2000 May; 83 (5):2946-55.

Yuengert, Hori, RK, Kibodeaux EE, et al. Origin of a non-Clarke’s column division of the dorsal spinocerebellar tract and the role of caudal proprioceptive neurons in motor function. Cell Rep. 2015 Nov 10; 13 (6):1258-71.

Embiruçu EK1, Martyn ML, Schlesinger D, Kok F. Autosomal recessive ataxias: 20 types, and counting. Arq Neuropsiquiatr. 2009 Dec; 67 (4):1143-56.

Berciano J, Pascual J, Oterino A. Degeneraciones cerebelosas y espinocerebelosas. En: Neuropatología Diagnóstica y Clínica, F. F Cruz-Sánchez, EDIMSA, Madrid 2000. pp. 651-61

Yuengert R, Hori K1, Kibodeaux EE1, McClellan JX2 et al. Origin of a Non-Clarke’s Column Division of the Dorsal Spinocerebellar Tract and the Role of Caudal Proprioceptive Neurons in Motor Function. Cell Rep. 2015 Nov. 10;13 (6):1258-71.

Pandolfo M. Friedreich Ataxia. Arch Neurol 2008; 65:1296-303.

Brown AG, Martin HF 3rd. Activation of descending control of the spinocervical tract by impulses ascending the dorsal columns and relaying through the dorsal column nuclei. J Physiol. 1973 Dec; 235 (2):535-50.

Bosco G, Poppele RE.Proprioception from a spinocerebellar perspective. Physiol Rev. 2001 Apr; 81 (2):539-68.

Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J Physiol. 2012 Apr 1;590 (7):1737-55.

Uchihara T1, Duyckaerts C, Iwabuchi K,et al. Was the ataxia of Pierre Marie Machado-Joseph disease?: A reappraisal based on the last autopsy case from la Salpêtrière Hospital. Arch Neurol. 2004 May; 61(5):784-90.

Gungor T, Buhring I, Cremer R, Gartenschlager M, Zielen S. Pathogenesis, diagnosis, clinical and therapeutic aspects of ataxia telangiectasia. Clin Pediatr 1997;209 (5):32-5.

Mey MS. Ataxia telangiectasia, cancer and the pathobiology of the ATM gene. Clin Genet 1999;55 (5):289-304

Mathis S1, Paquis V, Mesnage V, et al. Wolfram’s syndrome presenting as a cerebellar ataxia.[Article in French] Rev Neurol (Paris). 2007 Feb;163 (2):197-204.

Kanazawa I (June 1999). “Molecular pathology of dentatorubralpallidoluysian atrophy”. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354 (1386):1069–74.

Jump Licht D, Lynch D (2002). Juvenile Dentatorubral-Pallidoluysian Atrophy: New Clinical Features. Pediatr Neurol. 26 (1):51–4.

Jankovic J. Parkinson disease and other movement disorders. In: Daroff RB, Jankovic J, Maziotta JC, Pomeroy SL, eds. Bradley’s Neurology in Clinical Practice. 7th ed. Philadelphia, PA: Elsevier; 2016: chap 96.

Louis ED. Linking Essential Tremor to the Cerebellum: Neuropathological Evidence. Cerebellum. 2016 Jun;15 (3):235-42.

Turner BM, Paradiso S, Marvel CL, et al. The cerebellum and emotional experience. Neuropsychologia. 2007 Mar 25;45 (6):1331-41.

Poppele RE1, Bosco G, Rankin AM. J Independent representations of limb axis length and orientation in spinocerebellar response components. J Neurophysiol. 2002 Jan;87 (1):409-22.

Stecina K1, Fedirchuk B, Hultborn H. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J Physiol. 2013 Nov 15;591(22):5433-43.

Fedirchuk B, Stecina K, Kristensen KK Neurophysiol. 2013 Jan;109 (2): 375-88. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions. Neurophysiol. 2013 Jan;109 (2):375-88.

Cooper IS. Effect of stimulation of posterior cerebellum on neurological disease. Lancet. 1973 Jun 9;1 (7815):1321.

Cooper IS, Upton AR. Effects of cerebellar stimulation on epilepsy, the EEG and cerebral palsy in man. Electroencephalogr Clin Neurophysiol Suppl. 1978; (34):349-54.

Cooper IS. Twenty-five years of experience with physiological neurosurgery. Neurosurgery. 1981 Aug; 9 (2):190-200.

Velasco F, Carrillo-Ruiz JD, Brito Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia. 2005 Jul;46 (7):1071-81.

Teixeira MJ, Cury RG, Galhardoni R. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology. 2015 Dec 8;85 (23):2075-6.

Teixeira MJ1, Schroeder HK1, Lepski GBr J Neurosurg. Evaluating cerebellar dentatotomy for the treatment of spasticity with or without dystonia. Br J Neurosurg. 2015;29 (6):772-7.

Galanda M, Hovath S. Different effects of chronic electrical stimulation and motor disorders. Stereotact Funct Neurosurg 1997; 69–116.

Surgically Brain Damaged Pig as a model to investigate FES’s applications on spasticity of cerebral and related diseases. Proceedings of the 10th Conference of the International Federation of Electrical Stimulation (IFESS) Montreal-Canada, July 4-8th 2005. pp.156-8.

Andreani JCM, Guma C. New animal model to mimic spastic cerebral palsy: the brain damaged pig preparation. Neuromodulation Vol. 11 N°3; pp.196-201.

Lateral Cord Stimulation (LCS) to relieve spasticity experimental protocol and results. Proceedings of the 10th Conference of the International Federation of Electrical Stimulation (IFESS) Montreal-Canada, July 4-8th 2005. pp.153-5.

Andreani JCM, Guma C. Lateral cord stimulation decreases spastic electromyographic spreading. Responses in a brain-damaged pig preparation. Neuromodulation Vol. 11 N° 3; pp.202-207.

Jiao J, Jensen W, Harreby KR, Sevcencu C. 2016. The effect of Spinal Cord Stimulation on Epileptic Seizures. Neuromodulation 2016, 19. pp.154 –160.

Are Spinocerebellar Tracts Responsible for Epiletogenic Activity Control ? Carta al Editor (Letter to the Editor). Neuromodulation. Vol. 16. pp. 901 – 902. Dic. 2016.

Dali M, Rossel O, Guiraud D. Collection 2016.Fast Simulation and Optimization Tool to Explore Selective Neural Stimulation. Eur J Transl Myol. 2016 Jun 13;26 (3):6060.

Zariffa J1, Popovic MR. Localization of active pathways in peripheral nerves: a simulation study. IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17 (1): pp.53-62.

North RB1, Kidd DH, Olin J,et al. Spinal cord stimulation with interleaved pulses: a randomized, controlled trial. Neuromodulation. 2007 Oct;10 (4): pp.349-57.

Andreani JCM, Azar Schreiner D, Conesa, H Rootless free area of the Lateral Cervical Spinal Cord is a target for Lateral Cord Stimulatrion. Proceedings of the 10th World Metting of the International Neuromodulation Society (INS). London 2011.

Hemilaminectomia cervical modificada para implante de electrodo en la médula espinal (Poster). XLVII Jornadas Anuales de la Sociedad de Neurocirugía de la Provincia de Buenos Aires (Neuropinamar 2005), 8 al 10 diciembre 2005.

Descargas

Publicado

2018-04-01

Cómo citar

1.
Andreani JC. Sistema espinocerebeloso. Conceptos clásicos e implicancias neurofuncionales. NeuroTarget [Internet]. 1 de abril de 2018 [citado 21 de noviembre de 2024];12(1):27-38. Disponible en: https://neurotarget.com/index.php/nt/article/view/113

Número

Sección

Original