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Abstract

Introduction: Addictions pose a major global health and
socioeconomic challenge. Treatment strategies include
pharmacological interventions, deep brain stimulation, and
ablative procedures. Stereotactic radiosurgery (SRS) has
emerged as a noninvasive, precise option for addiction ma-
nagement. nderstanding the anatomy and connectivity of the
nucleus accumbens (NAc) is key to refining radiosurgical
targets and improving outcomes.

Method: Diffusion tensor imaging from 3T and 1.5T MRI
scanners was obtained in five healthy subjects using T1 and
T2 sequences. Images were fused with autosegmentation of
the NAc, ventral tegmental areca (VTA), amygdala, hippo-
campus, hypothalamus, and periventricular gray (PVG). The
insula, medial/lateral orbitofrontal cortex, and dorsolateral
prefrontal cortex were manually drawn. Connectivity to the
NAc was visually assessed with fractional anisotropy thres-
holds (20-10). The five densest fiber tracts guided target
selection, aligned to the anterior—posterior commissure, and
transferred to Gamma Plan for radiosurgical planning.
Results: The strongest connections were between the medial
orbitofrontal cortex (mOFC), hypothalamus, VTA, PVG,
and amygdala with the NAc. The mOFC-NAc and hippo-
campus—NAc tracts were the most and least robust, respec-
tively. Derived stereotactic coordinates supported connecto-
me-based targeting, proposing a 90 Gy dose to the NAc shell
and aligning the 20 Gy isodose for neuromodulation. The
right and left NAc received > 20 Gy in 75.2% and 55.6% of
their volumes, while the optic apparatus received < 5.4 Gy
(Dmax).

Discussion: The NAc, within the ventral striatum, integrates
limbic, cognitive, and motor inputs regulating reward and
motivation. Its shell and core subregions differ functionally,
with the shell showing dense dopaminergic input from the
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VTA and high sensitivity to reinforcement stimuli. Chronic
substance exposure induces neuroplastic changes underl-
ying compulsive behaviors, making the NAc shell a ratio-
nal neurosurgical target. DBS, radiofrequency ablation, and
SRS have yielded variable but promising results in refrac-
tory opioid and alcohol dependence. Advances in diffusion
imaging now enable precise mapping of NAc connectivity
and subregion-specific targeting. High-dose (up to 90 Gy)
LINAC-based radiosurgery has shown safety and potential
for radiomodulation, highlighting the therapeutic promise of
anatomically informed, connectivity-guided interventions.
Conclusions: Addiction remains a pervasive disorder with
high relapse rates despite medical and behavioral therapies.
Radiosurgery, a time-tested and safe functional technique,
may offer a new treatment alternative. Connectivity-based
SRS using commercial planning software allows visualiza-
tion and autosegmentation of key NAc connections, suppor-
ting patient-specific, circuit-informed targeting in addiction
neuromodulation.
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Figure 1. Bilateral trajectories targeting the highest-density fiber bundles crossing the nucleus accumbens (NAc).
Axial, sagittal, coronal, and superior views of the left (A-D) and right (E-H) trajectories show fibers connecting the

medial orbitofrontal cortex, amygdala, hypothalamus, ventral tegmental area, and periaqueductal gray with the NAc,
particularly its ventromedial “shell.” Images were generated using BrainLab Elements (BrainLab, Munich, Germany).
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