NeuroTarget Conference Abstracts

Modelo para la Prescripción de los Contactos más Efectivos de los Electrodos Cerebrales Implantados en el Núcleo Subtalámico en Pacientes con Enfermedad de Parkinson

Reunión intermedia de WSSFN 2025. Resumen 0089

Fabián Piedimonte, Nicolas Barbosa, Juan Pablo Travi, Nelson Ernesto Quintanal Cordero. Fundación Cenit para la Investigación en Neurociencias.

Autor para correspondencia: Fabián Piedimonte. email: fpiedimonte@fundacioncenit.org.ar

Como citar: Piedimonte F, Barbosa N, Travi JP, Quintanal Cordero NE. Modelo para la Prescripción de los Contactos más Efectivos de los Electrodos Cerebrales Implantados en el Núcleo Subtalámico en Pacientes con Enfermedad de Parkinson: Reunión intermedia de WSSFN 2025. Resumen 0089. NeuroTarget. 2025;19(2):61.

Resumen

Introducción: La programación inicial de la estimulación cerebral profunda (ECP) del núcleo subtalámico (NST) en enfermedad de Parkinson requiere la prueba sistemática de contactos ("contact testing"), lo que prolonga el tiempo hasta alcanzar un control óptimo de los síntomas y aumenta la carga asistencial. El objetivo de nuestro estudio fue desarrollar un sistema predictivo basado en los datos del microregistro multiunitario intraoperatorio y de las imágenes postoperatorias para seleccionar el contacto más efectivo del electrodo, reduciendo así el tiempo de programación y mejorando la calidad de vida del paciente.

Método: Componentes del Sistema: Uso de imágenes pre y postoperatorias fusionadas de Tomografía Computarizada y de Resonancia Magnética para planeamiento estereotáctico. Microregistros multiunitarios intraoperatorios para la localización precisa del núcleo subtalámico. Análisis de datos con herramientas de visualización (mapas de calor, reconstrucción 3D) y algoritmos de machine learning (supervisado y no supervisado). Beneficios esperados: Disminución del tiempo de la consulta para la programación; selección más precisa y rápida de los contactos efectivos; mejora rápida en el control de síntomas como rigidez, temblor y bradiquinesia y optimización de recursos institucionales. Evaluación del modelo: Se utilizará una matriz de confusión para validar la precisión del sistema frente al método tradicional y se realizará un seguimiento comparativo entre la predicción del modelo y la evaluación del neurólogo. Implementación: El modelo fue implementado en un primer paciente en abril de 2024.

Resultados: El modelo podría identificar correctamente el contacto más efectivo, coincidiendo con la selección final del equipo interdisciplinario. Esto permitira reducir el tiempo de programación inicial y lograr mejoría temprana de rigidez, temblor y bradicinesia. A su vez, el análisis preliminar mostró reducción en la utilización de recursos institucionales.

Discusión: La integración de datos neurofisiológicos e imagenológicos permite una programación más rápida y precisa, coherente con reportes previos sobre el valor del MER y la imagen fusionada para optimizar la ECP. Consideramos que este proyecto puede dar a luz a una herramienta práctica y de extrema utilidad en el campo de la neuromodulación cerebral para el tratamiento de la enfermedad de Parkinson.

Conclusiones: Con el presente modelo intentamos alcanzar en forma expeditiva y precisa la selección de los contactos más efectivos de los electrodos implantados y de esta manera, obtener resultados terapéuticos óptimos de forma precoz.

Referencias Bibligráficas

- Piedimonte F, Acosta T. Núcleo subtalámico. Neurotarget. 2015:9(4):8-9.
- Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P,Arnulf I, etal. Bilateral subthalamic stimulation forParkinson's disease by using three-dimensional stereotac-tic magnetic resonance imaging and electrophysiologicalguidance. J Neurosurg. 2000;92(4):615-25.
- Teijeiro J, Macías RJ, Maragoto C, García I, Alvarez M,Quintanal NE. Registro cerebral profundo y tiempoquirúrgico en la neurocirugía estereotáctica funcional paratrastornos del movimiento. Neurocirugía. 2014;25(3):116-27.
- Malinova V, Pinter A, Dragaescu C, Rohde V,Trenkwalder C, Sixel-Döring F, etal. The role ofintraoperative microelectrode recording and stimulationin subthalamic lead placement for Parkinson's disease. PloS One. 2020;15(11):e0241752.

ISSN: 1850 - 4485 Neurotarget 2025;19(2):61