

Toward an in Vivo Understanding of Addiction and Neuromodulation: Electrophysiologic Correlates of Neurochemicals During Opioid Administration in a Swine Model of Tractography-Guided Deep Brain Stimulation

WSSFN 2025 Interim Meeting. Abstract 0080

Kristen Scheitler, Juan Rojas-Cabrera, Tyler Oesterle, Maximiliano Hawkes, Charles Blaha, Hojin Shin, Yoonbae Oh, Kendall Lee.

¹University Hospital Center. United States.

Corresponding author: Kristen Scheitler email: scheitler.kristen@mayo.edu

How to Cite: Scheitler K, Rojas-Cabrera J, Oesterle T, Hawkes M, Blaha C, Shin H, et al. Toward an in Vivo Understanding of Addiction and Neuromodulation: Electrophysiologic Correlates of Neurochemicals During Opioid Administration in a Swine Model of Tractography-Guided Deep Brain Stimulation: WSSFN 2025 Interim Meeting. Abstract 0080. NeuroTarget. 2025;19(2):54.

Abstract

Introduction: Dysregulation of mesolimbic dopamine pathways contributes to the pathophysiology of opioid addiction. Although intraoperative electrophysiology is routinely performed during deep brain stimulation (DBS), no existing clinical platform can record both electrophysiologic and neurochemical signals in parallel. Identifying electrophysiologic signatures of dopamine dynamics could clarify addiction mechanisms and support development of closed-loop DBS therapies.

Method: The Multifunctional Apparatus for Voltammetry, Electrophysiology, and Neuromodulation (MAVEN) was used in an anesthetized swine model of frame-based, tractography-guided ventral tegmental area (VTA) DBS. A carbon fiber microelectrode (CFM) was stereotactically implanted in the swine nucleus accumbens (NAc) to record both tonic dopamine concentrations and local field potentials (LFPs). Tonic dopamine concentrations were measured using multiple cyclic square wave voltammetry (MCSWV) with the following parameters: initial potential -0.2 V, staircase increment +25 mV, square wave amplitude ± 0.4 V, pulse duration 1.0 ms, five cyclic square waves per scan, and scan rate 0.1 Hz. Baseline and post-fentanyl recordings were performed.

Results: Fentanyl administration resulted in increases in tonic dopamine concentrations in the NAc. Concurrent electrophysiologic recordings revealed increased power in lower-frequency LFP bands. Pre- and post-operative in vitro testing confirmed dopamine detection by the CFM.

Discussion: This study demonstrates the feasibility of simultaneous neurochemical and electrophysiologic recording using MAVEN during tractography-guided DBS in a large-animal model of opioid administration.

Conclusions: These results support the potential for neuro-

transmitters to serve as biomarkers of opioid intake in the development of closed-loop neuromodulation systems for opioid addiction and other neuropsychiatric disorders.

References

1. Koob GF, Moal ML. Drug abuse: hedonic homeostatic dysregulation. *Science*. 1997;3:278:52-8.
2. Yang CR, Mogenson GJ. Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. *Brain research*. 1984;17;324:69-84.
3. Scheitler KM, Rojas-Cabrera JM, Vettleson-Trutza SA, Tsai ST, Pons-Monnier GK, El-Gohary MM, et al. Application of a human stereotactic system for image-guided deep brain stimulation neurosurgery in a swine model. *Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation*. 2025;1;18:1441-3.
4. Oh Y, Heien ML, Park C, Kang YM, Kim J, Boschen SL, et al. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. *Biosensors and Bioelectronics*. 2018;15;121:174-82.
5. Rusheen AE, Rojas-Cabrera J, Goyal A, Shin H, Yuen J, Jang DP, et al. Deep brain stimulation alleviates tics in Tourette syndrome via striatal dopamine transmission. *Brain*. 2023;146(10):4174-90.